These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 26848783)

  • 21. Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles.
    Ma C; Zhang X; Xia J; Ezawa M; Jiang W; Ono T; Piramanayagam SN; Morisako A; Zhou Y; Liu X
    Nano Lett; 2019 Jan; 19(1):353-361. PubMed ID: 30537837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe.
    Hou Z; Zhang Q; Xu G; Gong C; Ding B; Wang Y; Li H; Liu E; Xu F; Zhang H; Yao Y; Wu G; Zhang XX; Wang W
    Nano Lett; 2018 Feb; 18(2):1274-1279. PubMed ID: 29299928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skyrmion based majority logic gate by voltage controlled magnetic anisotropy in a nanomagnetic device.
    Paikaray B; Kuchibhotla M; Haldar A; Murapaka C
    Nanotechnology; 2023 Mar; 34(22):. PubMed ID: 36827697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures.
    Wu H; Groß F; Dai B; Lujan D; Razavi SA; Zhang P; Liu Y; Sobotkiewich K; Förster J; Weigand M; Schütz G; Li X; Gräfe J; Wang KL
    Adv Mater; 2020 Aug; 32(34):e2003380. PubMed ID: 32666575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-Induced Reversible Motion of Skyrmions at Room Temperature.
    Liu C; Wang J; He W; Zhang C; Zhang S; Yuan S; Hou Z; Qin M; Xu Y; Gao X; Peng Y; Liu K; Qiu ZQ; Liu JM; Zhang X
    ACS Nano; 2024 Jan; 18(1):761-769. PubMed ID: 38127497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current-Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet.
    Yu X; Morikawa D; Tokunaga Y; Kubota M; Kurumaji T; Oike H; Nakamura M; Kagawa F; Taguchi Y; Arima TH; Kawasaki M; Tokura Y
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles.
    Dohi T; DuttaGupta S; Fukami S; Ohno H
    Nat Commun; 2019 Nov; 10(1):5153. PubMed ID: 31727895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anatomy of Skyrmionic Textures in Magnetic Multilayers.
    Li W; Bykova I; Zhang S; Yu G; Tomasello R; Carpentieri M; Liu Y; Guang Y; Gräfe J; Weigand M; Burn DM; van der Laan G; Hesjedal T; Yan Z; Feng J; Wan C; Wei J; Wang X; Zhang X; Xu H; Guo C; Wei H; Finocchio G; Han X; Schütz G
    Adv Mater; 2019 Apr; 31(14):e1807683. PubMed ID: 30735264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Room-Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self-Intercalation.
    Zhang C; Liu C; Zhang J; Yuan Y; Wen Y; Li Y; Zheng D; Zhang Q; Hou Z; Yin G; Liu K; Peng Y; Zhang XX
    Adv Mater; 2023 Jan; 35(1):e2205967. PubMed ID: 36245330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T; Sugimoto S; Rana B; Seki S; Ogawa N; Kasai S; Otani Y
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of Magnetic Skyrmions on Arrays of Self-Assembled Hexagonal Nanodomes for Magnetic Recording Applications.
    Tejo F; Toneto D; Oyarzún S; Hermosilla J; Danna CS; Palma JL; da Silva RB; Dorneles LS; Denardin JC
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53454-53461. PubMed ID: 33169962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the Properties of Zero-Field Room Temperature Ferromagnetic Skyrmions by Interlayer Exchange Coupling.
    Lo Conte R; Nandy AK; Chen G; Fernandes Cauduro AL; Maity A; Ophus C; Chen Z; N'Diaye AT; Liu K; Schmid AK; Wiesendanger R
    Nano Lett; 2020 Jul; 20(7):4739-4747. PubMed ID: 32459968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal skyrmion diffusion used in a reshuffler device.
    Zázvorka J; Jakobs F; Heinze D; Keil N; Kromin S; Jaiswal S; Litzius K; Jakob G; Virnau P; Pinna D; Everschor-Sitte K; Rózsa L; Donges A; Nowak U; Kläui M
    Nat Nanotechnol; 2019 Jul; 14(7):658-661. PubMed ID: 31011220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Realization of skyrmion shift register.
    Zhao L; Hua C; Song C; Yu W; Jiang W
    Sci Bull (Beijing); 2024 May; ():. PubMed ID: 38960814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature.
    Amin OJ; Poole SF; Reimers S; Barton LX; Dal Din A; Maccherozzi F; Dhesi SS; Novák V; Krizek F; Chauhan JS; Campion RP; Rushforth AW; Jungwirth T; Tretiakov OA; Edmonds KW; Wadley P
    Nat Nanotechnol; 2023 Aug; 18(8):849-853. PubMed ID: 37157021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Room-temperature high spin-orbit torque due to quantum confinement in sputtered Bi
    Dc M; Grassi R; Chen JY; Jamali M; Reifsnyder Hickey D; Zhang D; Zhao Z; Li H; Quarterman P; Lv Y; Li M; Manchon A; Mkhoyan KA; Low T; Wang JP
    Nat Mater; 2018 Sep; 17(9):800-807. PubMed ID: 30061733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current-induced skyrmion generation and dynamics in symmetric bilayers.
    Hrabec A; Sampaio J; Belmeguenai M; Gross I; Weil R; Chérif SM; Stashkevich A; Jacques V; Thiaville A; Rohart S
    Nat Commun; 2017 Jun; 8():15765. PubMed ID: 28593949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric field control of Néel spin-orbit torque in an antiferromagnet.
    Chen X; Zhou X; Cheng R; Song C; Zhang J; Wu Y; Ba Y; Li H; Sun Y; You Y; Zhao Y; Pan F
    Nat Mater; 2019 Sep; 18(9):931-935. PubMed ID: 31285619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling.
    Ba Y; Zhuang S; Zhang Y; Wang Y; Gao Y; Zhou H; Chen M; Sun W; Liu Q; Chai G; Ma J; Zhang Y; Tian H; Du H; Jiang W; Nan C; Hu JM; Zhao Y
    Nat Commun; 2021 Jan; 12(1):322. PubMed ID: 33436572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realization of Isolated and High-Density Skyrmions at Room Temperature in Uncompensated Synthetic Antiferromagnets.
    Chen R; Gao Y; Zhang X; Zhang R; Yin S; Chen X; Zhou X; Zhou Y; Xia J; Zhou Y; Wang S; Pan F; Zhang Y; Song C
    Nano Lett; 2020 May; 20(5):3299-3305. PubMed ID: 32282217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.