BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26848838)

  • 21. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).
    Bersani D; Salvioli-Mariani E; Mattioli M; Menichetti M; Lottici PP
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):443-9. PubMed ID: 19117796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, Western Australia.
    Sugitani K; Lepot K; Nagaoka T; Mimura K; Van Kranendonk M; Oehler DZ; Walter MR
    Astrobiology; 2010 Nov; 10(9):899-920. PubMed ID: 21118023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Earth's oldest (approximately 3.5 Ga) fossils and the 'Early Eden hypothesis': questioning the evidence.
    Brasier M; Green O; Lindsay J; Steele A
    Orig Life Evol Biosph; 2004 Feb; 34(1-2):257-69. PubMed ID: 14979661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of a new chert-permineralized microbiota in the Proterozoic Buxa Formation of the Ranjit window, Sikkim, northeast India, and its astrobiological implications.
    Schopf JW; Tewari VC; Kudryavtsev AB
    Astrobiology; 2008 Aug; 8(4):735-46. PubMed ID: 18844456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermally altered Silurian cyanobacterial mats: a key to Earth's oldest fossils.
    Kazmierczak J; Kremer B
    Astrobiology; 2009 Oct; 9(8):731-43. PubMed ID: 19845445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.
    Qu Y; Engdahl A; Zhu S; Vajda V; McLoughlin N
    Astrobiology; 2015 Oct; 15(10):825-42. PubMed ID: 26496525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinctive microfossil supports early Paleoproterozoic rise in complex cellular organisation.
    Barlow EV; House CH; Liu MC; Wetherington MT; Van Kranendonk MJ
    Geobiology; 2024; 22(1):e12576. PubMed ID: 37803496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples.
    Olivares M; Tarriño A; Murelaga X; Baceta JI; Castro K; Etxebarria N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):492-7. PubMed ID: 19208495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Micro-area characteristics of laminated chert in the volcanic rocks of Xionger Group of Ruyang area and its geological significances].
    Luo A; Li HZ; Zhao MZ; Yang ZJ; Liang J; He JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec; 34(12):3333-9. PubMed ID: 25881434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiwavelength Ablation/Ionization and Mass Spectrometric Analysis of 1.88 Ga Gunflint Chert.
    Lukmanov RA; Tulej M; Wiesendanger R; Riedo A; Grimaudo V; Ligterink NFW; de Koning C; Neubeck A; Wacey D; Wurz P
    Astrobiology; 2022 Apr; 22(4):369-386. PubMed ID: 35196459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ~1.9-Ga Gunflint chert.
    Wacey D; McLoughlin N; Kilburn MR; Saunders M; Cliff JB; Kong C; Barley ME; Brasier MD
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8020-4. PubMed ID: 23630257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman hyperspectral imaging of microfossils: potential pitfalls.
    Marshall CP; Olcott Marshall A
    Astrobiology; 2013 Oct; 13(10):920-31. PubMed ID: 24088070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.
    Pasteris JD; Wopenka B
    Astrobiology; 2003; 3(4):727-38. PubMed ID: 14987478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.
    Lepot K; Philippot P; Benzerara K; Wang GY
    Geobiology; 2009 Sep; 7(4):393-402. PubMed ID: 19656217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching.
    Kopitkovas G; Deckert V; Lippert T; Raimondi F; Schneider CW; Wokaun A
    Phys Chem Chem Phys; 2008 Jun; 10(22):3195-202. PubMed ID: 18500395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Microscopic raman spectral imaging of oily core].
    Huang QS; Yu ZX; Li J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2880-4. PubMed ID: 19248505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard.
    Knoll AH
    Palaeontology; 1992; 35(Pt 4):751-74. PubMed ID: 11538057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ laser-Raman imagery of precambrian microscopic fossils.
    Kudryavtsev AB; Schopf JW; Agresti DG; Wdowiak TJ
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):823-6. PubMed ID: 11158554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser--Raman imagery of Earth's earliest fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Wdowiak TJ; Czaja AD
    Nature; 2002 Mar; 416(6876):73-6. PubMed ID: 11882894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman spectroscopic investigation on high refractive index glasses prepared from local quartz sand.
    Dararutana P; Pongkrapan S; Sirikulrat N; Thawornmongkolkij M; Wathanakul P
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):440-2. PubMed ID: 19081291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.