BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26849354)

  • 1. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis.
    Zuo Z; Cong H; Li W; Choi J; Fu GC; MacMillan DW
    J Am Chem Soc; 2016 Feb; 138(6):1832-5. PubMed ID: 26849354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Merging photoredox and nickel catalysis: decarboxylative cross-coupling of carboxylic acids with vinyl halides.
    Noble A; McCarver SJ; MacMillan DW
    J Am Chem Soc; 2015 Jan; 137(2):624-7. PubMed ID: 25521443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic decarboxylative reduction of carboxylic acids and its application in asymmetric synthesis.
    Cassani C; Bergonzini G; Wallentin CJ
    Org Lett; 2014 Aug; 16(16):4228-31. PubMed ID: 25068198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α-Arylation/Heteroarylation of Chiral α-Aminomethyltrifluoroborates by Synergistic Iridium Photoredox/Nickel Cross-Coupling Catalysis.
    El Khatib M; Serafim RA; Molander GA
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):254-8. PubMed ID: 26592731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.
    Chu L; Lipshultz JM; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7929-33. PubMed ID: 26014029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis.
    Cheng X; Lu H; Lu Z
    Nat Commun; 2019 Aug; 10(1):3549. PubMed ID: 31391466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp(3)-sp(2) Cross-Coupling.
    Tellis JC; Kelly CB; Primer DN; Jouffroy M; Patel NR; Molander GA
    Acc Chem Res; 2016 Jul; 49(7):1429-39. PubMed ID: 27379472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Catalytic Decarboxylative Allylations of α-Amino Acids and Their Divergent Mechanisms.
    Lang SB; O'Nele KM; Douglas JT; Tunge JA
    Chemistry; 2015 Dec; 21(51):18589-93. PubMed ID: 26526115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.
    Zhang X; MacMillan DWC
    J Am Chem Soc; 2017 Aug; 139(33):11353-11356. PubMed ID: 28780856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water.
    Kölmel DK; Meng J; Tsai MH; Que J; Loach RP; Knauber T; Wan J; Flanagan ME
    ACS Comb Sci; 2019 Aug; 21(8):588-597. PubMed ID: 31283168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore.
    Zuo Z; MacMillan DW
    J Am Chem Soc; 2014 Apr; 136(14):5257-60. PubMed ID: 24712922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis.
    Shu X; Zhong D; Huang Q; Huan L; Huo H
    Nat Commun; 2023 Jan; 14(1):125. PubMed ID: 36624097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins.
    Millet A; Lefebvre Q; Rueping M
    Chemistry; 2016 Sep; 22(38):13464-8. PubMed ID: 27321136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.
    Ventre S; Petronijevic FR; MacMillan DW
    J Am Chem Soc; 2015 May; 137(17):5654-7. PubMed ID: 25881929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric aerobic decarboxylative Povarov reactions of N-aryl α-amino acids with methylenephthalimidines via cooperative photoredox and chiral Brønsted acid catalysis.
    Li J; Gu Z; Zhao X; Qiao B; Jiang Z
    Chem Commun (Camb); 2019 Oct; 55(86):12916-12919. PubMed ID: 31603445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching on elusive organometallic mechanisms with photoredox catalysis.
    Terrett JA; Cuthbertson JD; Shurtleff VW; MacMillan DW
    Nature; 2015 Aug; 524(7565):330-4. PubMed ID: 26266976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective synthesis of β-amino acid derivatives via nickel-promoted regioselective carboxylation of ynamides and rhodium-catalyzed asymmetric hydrogenation.
    Saito N; Abdullah I; Hayashi K; Hamada K; Koyama M; Sato Y
    Org Biomol Chem; 2016 Oct; 14(42):10080-10089. PubMed ID: 27722728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallaphotoredox-catalysed sp(3)-sp(3) cross-coupling of carboxylic acids with alkyl halides.
    Johnston CP; Smith RT; Allmendinger S; MacMillan DW
    Nature; 2016 Aug; 536(7616):322-5. PubMed ID: 27535536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Synthesis of Secondary Benzylic Alcohols Enabled by Photoredox/Ni Dual-Catalyzed Cross-Coupling.
    Alam R; Molander GA
    J Org Chem; 2017 Dec; 82(24):13728-13734. PubMed ID: 29172494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective recognition of α-hydroxycarboxylic acids and N-Boc-amino acids by counterion-displacement assays with a chiral nickel(II) complex.
    He X; Zhang Q; Wang W; Lin L; Liu X; Feng X
    Org Lett; 2011 Feb; 13(4):804-7. PubMed ID: 21247141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.