These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26849392)

  • 21. Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer.
    Chen JW; Liu XP; Feng KJ; Liang Y; Jiang JH; Shen GL; Yu RQ
    Biosens Bioelectron; 2008 Sep; 24(1):66-71. PubMed ID: 18436440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aligned silver nanorod arrays as substrates for surface-enhanced infrared absorption spectroscopy.
    Leverette CL; Jacobs SA; Shanmukh S; Chaney SB; Dluhy RA; Zhao YP
    Appl Spectrosc; 2006 Aug; 60(8):906-13. PubMed ID: 16925927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates.
    Li Z; Meng G; Huang Q; Hu X; He X; Tang H; Wang Z; Li F
    Small; 2015 Oct; 11(40):5452-9. PubMed ID: 26313309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SERS based aptasensor for ochratoxin A by combining Fe
    Song D; Yang R; Fang S; Liu Y; Long F; Zhu A
    Mikrochim Acta; 2018 Oct; 185(10):491. PubMed ID: 30284043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-petri-dish array assisted glancing angle sputtering for Ag-NP assembled bi-nanoring arrays as effective SERS substrates.
    Hu X; Meng G; Huang Q; Zhu C; Chen B; Huang Z; Li F; Wang Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):7991-5. PubMed ID: 24869912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides.
    Pang S; Labuza TP; He L
    Analyst; 2014 Apr; 139(8):1895-901. PubMed ID: 24551875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of surface contamination and self-assembled monolayers (SAMs) from silver (Ag) nanorod substrates by plasma cleaning with argon.
    Negri P; Marotta NE; Bottomley LA; Dluhy RA
    Appl Spectrosc; 2011 Jan; 65(1):66-74. PubMed ID: 21211156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive and selective detection of PCB 77 using an aptamer-catalytic hairpin assembly in an aquatic environment.
    Yuan L; Fu Q; Zhou M; Ma Y; Zang L; Qin Y; Ji D; Zhang F
    RSC Adv; 2021 Jan; 11(10):5506-5511. PubMed ID: 35423071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-density ordered Ag@Al₂O₃ nanobowl arrays in applications of surface-enhanced Raman spectroscopy.
    Kang M; Zhang X; Liu L; Zhou Q; Jin M; Zhou G; Gao X; Lu X; Zhang Z; Liu J
    Nanotechnology; 2016 Apr; 27(16):165304. PubMed ID: 26963676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy.
    Hu X; Wang X; Ge Z; Zhang L; Zhou Y; Li J; Bu L; Wu H; Li P; Xu W
    Analyst; 2019 Jun; 144(12):3861-3869. PubMed ID: 31099357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection and characterization of PCB-binding DNA aptamers.
    Mehta J; Rouah-Martin E; Van Dorst B; Maes B; Herrebout W; Scippo ML; Dardenne F; Blust R; Robbens J
    Anal Chem; 2012 Feb; 84(3):1669-76. PubMed ID: 22166135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct optical detection of aptamer conformational changes induced by target molecules.
    Neumann O; Zhang D; Tam F; Lal S; Wittung-Stafshede P; Halas NJ
    Anal Chem; 2009 Dec; 81(24):10002-6. PubMed ID: 19928834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of 17β-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on Au@Ag core-shell nanoparticles.
    Yao L; Li Y; Cheng K; Pan D; Xu J; Chen W
    Mikrochim Acta; 2019 Jan; 186(2):52. PubMed ID: 30617656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.
    Liu J; Meng G; Li X; Huang Z
    Langmuir; 2014 Nov; 30(46):13964-9. PubMed ID: 25361441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity.
    Xu LJ; Lei ZC; Li J; Zong C; Yang CJ; Ren B
    J Am Chem Soc; 2015 Apr; 137(15):5149-54. PubMed ID: 25835155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum.
    Pilehvar S; Ahmad Rather J; Dardenne F; Robbens J; Blust R; De Wael K
    Biosens Bioelectron; 2014 Apr; 54():78-84. PubMed ID: 24252763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag
    Wu Y; Jiang T; Wu Z; Yu R
    Talanta; 2018 Aug; 185():30-36. PubMed ID: 29759204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue.
    Geng F; Zhao H; Fu Q; Mi Y; Miao L; Li W; Dong Y; Wu M; Lei Y
    Nanotechnology; 2018 Jul; 29(29):295502. PubMed ID: 29722294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene Oxide Nanoprisms for Sensitive Detection of Environmentally Important Aromatic Compounds with SERS.
    Shanta PV; Cheng Q
    ACS Sens; 2017 Jun; 2(6):817-827. PubMed ID: 28723120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.