These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26849536)

  • 21. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability.
    Yu H; Ren K; Wu Q; Wang J; Lin J; Wang Z; Xu J; Oulton RF; Qu S; Jin P
    Nanoscale; 2016 Dec; 8(47):19536-19540. PubMed ID: 27878188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides.
    Siampour H; Kumar S; Davydov VA; Kulikova LF; Agafonov VN; Bozhevolnyi SI
    Light Sci Appl; 2018; 7():61. PubMed ID: 30245809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrathin Colloidal Quantum Dot Films for Optical Amplification: The Role of Modal Confinement and Heat Dissipation.
    Koh WK; Lee J; Cho KS; Roh YG
    Chemphyschem; 2017 Nov; 18(21):2981-2984. PubMed ID: 28861946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Submicrometer perovskite plasmonic lasers at room temperature.
    Cho S; Yang Y; Soljačić M; Yun SH
    Sci Adv; 2021 Aug; 7(35):. PubMed ID: 34433555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering.
    Aspetti CO; Agarwal R
    J Phys Chem Lett; 2014 Nov; 5(21):3768-3780. PubMed ID: 25396030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleaved-coupled nanowire lasers.
    Gao H; Fu A; Andrews SC; Yang P
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):865-9. PubMed ID: 23284173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherent Light Sources at the Nanoscale.
    Yang A; Wang D; Wang W; Odom TW
    Annu Rev Phys Chem; 2017 May; 68():83-99. PubMed ID: 28142312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-inorganic CsPbBr
    Chen Y; Yu M; Ye S; Song J; Qu J
    Nanoscale; 2018 Apr; 10(14):6704-6711. PubMed ID: 29589613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging and Controlling Photonic Modes in Perovskite Microcavities.
    Liu W; Li Y; Yu H; Wang J; Hu A; Jia S; Li X; Yang H; Dai L; Lu G; Liu Y; Wang S; Gong Q
    Adv Mater; 2021 Jun; 33(25):e2100775. PubMed ID: 33987871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative studies on the quality factors of whispering gallery modes and hybrid plasmon photon modes.
    Gu P; Chen J; Wan M; Chen Z; Wang Z
    Opt Express; 2017 Apr; 25(8):9295-9304. PubMed ID: 28438005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon lasers: coherent nanoscopic light sources.
    Deeb C; Pelouard JL
    Phys Chem Chem Phys; 2017 Nov; 19(44):29731-29741. PubMed ID: 29090287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process.
    Lin HC; Lee YC; Lin CC; Ho YL; Xing D; Chen MH; Lin BW; Chen LY; Chen CW; Delaunay JJ
    Nanoscale; 2022 Jul; 14(28):10075-10081. PubMed ID: 35792030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.
    Fan JR; Wu WG; Chen ZJ; Zhu J; Li J
    Nanoscale; 2017 Mar; 9(10):3416-3423. PubMed ID: 28009895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling.
    Liu JN; Huang Q; Liu KK; Singamaneni S; Cunningham BT
    Nano Lett; 2017 Dec; 17(12):7569-7577. PubMed ID: 29078049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled nanowire-based hybrid plasmonic nanocavities on thin substrates.
    Cheng PJ; Chiang CK; Chung YC; Tien CH; Lin TR
    Nanoscale Res Lett; 2014; 9(1):641. PubMed ID: 25520591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.