These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26849683)

  • 1. Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape.
    Kim K; Yoo D; Choi H; Tamang S; Ko JH; Kim S; Kim YH; Jeong S
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3714-8. PubMed ID: 26849683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic models for anionic ligand passivation of cation-rich surfaces of IV-VI, II-VI, and III-V colloidal quantum dots.
    Ko JH; Yoo D; Kim YH
    Chem Commun (Camb); 2016 Dec; 53(2):388-391. PubMed ID: 27942624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dicarboxylic Acid-Assisted Surface Oxide Removal and Passivation of Indium Antimonide Colloidal Quantum Dots for Short-Wave Infrared Photodetectors.
    Zhang Y; Xia P; Rehl B; Parmar DH; Choi D; Imran M; Chen Y; Liu Y; Vafaie M; Li C; Atan O; Pina JM; Paritmongkol W; Levina L; Voznyy O; Hoogland S; Sargent EH
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202316733. PubMed ID: 38170453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow Near-Infrared Emission from InP QDs Synthesized with Indium(I) Halides and Aminophosphine.
    Yadav R; Kwon Y; Rivaux C; Saint-Pierre C; Ling WL; Reiss P
    J Am Chem Soc; 2023 Mar; 145(10):5970-5981. PubMed ID: 36866828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc Carboxylate Surface Passivation for Enhanced Optical Properties of In(Zn)P Colloidal Quantum Dots.
    Yoo D; Bak E; Ju HM; Shin YM; Choi MJ
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed Lead Halide Passivation of Quantum Dots.
    Fan JZ; Andersen NT; Biondi M; Todorović P; Sun B; Ouellette O; Abed J; Sagar LK; Choi MJ; Hoogland S; de Arquer FPG; Sargent EH
    Adv Mater; 2019 Nov; 31(48):e1904304. PubMed ID: 31600007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications.
    Kim TG; Zherebetskyy D; Bekenstein Y; Oh MH; Wang LW; Jang E; Alivisatos AP
    ACS Nano; 2018 Nov; 12(11):11529-11540. PubMed ID: 30335943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.
    Tessier MD; De Nolf K; Dupont D; Sinnaeve D; De Roo J; Hens Z
    J Am Chem Soc; 2016 May; 138(18):5923-9. PubMed ID: 27111735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots.
    Choi MJ; Sagar LK; Sun B; Biondi M; Lee S; Najjariyan AM; Levina L; García de Arquer FP; Sargent EH
    Nano Lett; 2021 Jul; 21(14):6057-6063. PubMed ID: 34250796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic properties of colloidal indium phosphide quantum wires.
    Wang F; Yu H; Li J; Hang Q; Zemlyanov D; Gibbons PC; Wang LW; Janes DB; Buhro WE
    J Am Chem Soc; 2007 Nov; 129(46):14327-35. PubMed ID: 17967012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites.
    Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ
    J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-Dependent Optical Properties of InP Colloidal Quantum Dots.
    Almeida G; van der Poll L; Evers WH; Szoboszlai E; Vonk SJW; Rabouw FT; Houtepen AJ
    Nano Lett; 2023 Sep; 23(18):8697-8703. PubMed ID: 37672486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.
    Laufersky G; Bradley S; Frécaut E; Lein M; Nann T
    Nanoscale; 2018 May; 10(18):8752-8762. PubMed ID: 29708260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performance of Colloidal Quantum Dot Solar Cells.
    Kim C; Baek SW; Kim J; Kim B; Lee C; Park JY; Lee JY
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57840-57846. PubMed ID: 33320537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential Co-Passivation in InAs Colloidal Quantum Dot Solids Enables Efficient Near-Infrared Photodetectors.
    Xia P; Sun B; Biondi M; Xu J; Atan O; Imran M; Hassan Y; Liu Y; Pina JM; Najarian AM; Grater L; Bertens K; Sagar LK; Anwar H; Choi MJ; Zhang Y; Hasham M; García de Arquer FP; Hoogland S; Wilson MWB; Sargent EH
    Adv Mater; 2023 Jul; 35(28):e2301842. PubMed ID: 37170473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.
    Jewett SA; Ivanisevic A
    Acc Chem Res; 2012 Sep; 45(9):1451-9. PubMed ID: 22716947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III-V Colloidal Quantum Dots.
    Leemans J; Dümbgen KC; Minjauw MM; Zhao Q; Vantomme A; Infante I; Detavernier C; Hens Z
    J Am Chem Soc; 2021 Mar; 143(11):4290-4301. PubMed ID: 33710882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planar Cation Passivation on Colloidal Quantum Dots Enables High-Performance 0.35-1.8 µm Broadband TFT Imager.
    Liu Y; Liu J; Deng C; Wang B; Xia B; Liang X; Yang Y; Li S; Wang X; Li L; Lan X; Fei P; Zhang J; Gao L; Tang J
    Adv Mater; 2024 May; 36(21):e2313811. PubMed ID: 38358302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Trap States in InP and GaP Quantum Dots through Density Functional Theory.
    Alexander E; Kick M; McIsaac AR; Van Voorhis T
    Nano Lett; 2024 Jun; ():. PubMed ID: 38843032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells.
    Bederak D; Balazs DM; Sukharevska NV; Shulga AG; Abdu-Aguye M; Dirin DN; Kovalenko MV; Loi MA
    ACS Appl Nano Mater; 2018 Dec; 1(12):6882-6889. PubMed ID: 30613830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.