These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 2684970)
1. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. Ingrosso D; Fowler AV; Bleibaum J; Clarke S J Biol Chem; 1989 Nov; 264(33):20131-9. PubMed ID: 2684970 [TBL] [Abstract][Full Text] [Related]
2. Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Mudgett MB; Clarke S Biochemistry; 1993 Oct; 32(41):11100-11. PubMed ID: 8198620 [TBL] [Abstract][Full Text] [Related]
3. Distinct C-terminal sequences of isozymes I and II of the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Ingrosso D; Kagan RM; Clarke S Biochem Biophys Res Commun; 1991 Feb; 175(1):351-8. PubMed ID: 1998518 [TBL] [Abstract][Full Text] [Related]
4. Human erythrocyte D-aspartyl/L-isoaspartyl methyltransferases: enzymes that recognize age-damaged proteins. Ingrosso D; Clarke S Adv Exp Med Biol; 1991; 307():263-76. PubMed ID: 1805590 [No Abstract] [Full Text] [Related]
5. Specificity of endoproteinase Asp-N (Pseudomonas fragi): cleavage at glutamyl residues in two proteins. Ingrosso D; Fowler AV; Bleibaum J; Clarke S Biochem Biophys Res Commun; 1989 Aug; 162(3):1528-34. PubMed ID: 2669754 [TBL] [Abstract][Full Text] [Related]
6. Automethylation of protein (D-aspartyl/L-isoaspartyl) carboxyl methyltransferase, a response to enzyme aging. Lindquist JA; McFadden PN J Protein Chem; 1994 Jan; 13(1):23-30. PubMed ID: 8011068 [TBL] [Abstract][Full Text] [Related]
7. Purification, gene cloning, and sequence analysis of an L-isoaspartyl protein carboxyl methyltransferase from Escherichia coli. Fu JC; Ding L; Clarke S J Biol Chem; 1991 Aug; 266(22):14562-72. PubMed ID: 1860862 [TBL] [Abstract][Full Text] [Related]
8. Alternative splicing of the human isoaspartyl protein carboxyl methyltransferase RNA leads to the generation of a C-terminal -RDEL sequence in isozyme II. MacLaren DC; Kagan RM; Clarke S Biochem Biophys Res Commun; 1992 May; 185(1):277-83. PubMed ID: 1339271 [TBL] [Abstract][Full Text] [Related]
9. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase. Ota IM; Ding L; Clarke S J Biol Chem; 1987 Jun; 262(18):8522-31. PubMed ID: 3597386 [TBL] [Abstract][Full Text] [Related]
10. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes. Gilbert JM; Fowler A; Bleibaum J; Clarke S Biochemistry; 1988 Jul; 27(14):5227-33. PubMed ID: 3167043 [TBL] [Abstract][Full Text] [Related]
11. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. Lowenson JD; Clarke S J Biol Chem; 1992 Mar; 267(9):5985-95. PubMed ID: 1556110 [TBL] [Abstract][Full Text] [Related]
12. Expression and purification of a human recombinant methyltransferase that repairs damaged proteins. MacLaren DC; Clarke S Protein Expr Purif; 1995 Feb; 6(1):99-108. PubMed ID: 7756844 [TBL] [Abstract][Full Text] [Related]
13. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin. Ota IM; Clarke S Biochemistry; 1989 May; 28(9):4020-7. PubMed ID: 2502176 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. Ota IM; Clarke S J Biol Chem; 1989 Jan; 264(1):54-60. PubMed ID: 2642479 [TBL] [Abstract][Full Text] [Related]
15. Protein L-isoaspartyl methyltransferase from the nematode Caenorhabditis elegans: genomic structure and substrate specificity. Kagan RM; Clarke S Biochemistry; 1995 Aug; 34(34):10794-806. PubMed ID: 7662659 [TBL] [Abstract][Full Text] [Related]
16. Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates. O'Connor CM; Aswad DW; Clarke S Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7757-61. PubMed ID: 6595658 [TBL] [Abstract][Full Text] [Related]
17. The primary structure of a protein carboxyl methyltransferase from bovine brain that selectively methylates L-isoaspartyl sites. Henzel WJ; Stults JT; Hsu CA; Aswad DW J Biol Chem; 1989 Sep; 264(27):15905-11. PubMed ID: 2777770 [TBL] [Abstract][Full Text] [Related]
18. Chemical conversion of aspartyl peptides to isoaspartyl peptides. A method for generating new methyl-accepting substrates for the erythrocyte D-aspartyl/L-isoaspartyl protein methyltransferase. McFadden PN; Clarke S J Biol Chem; 1986 Sep; 261(25):11503-11. PubMed ID: 3745153 [TBL] [Abstract][Full Text] [Related]
19. Structural elements affecting the recognition of L-isoaspartyl residues by the L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. Lowenson JD; Clarke S J Biol Chem; 1991 Oct; 266(29):19396-406. PubMed ID: 1833402 [TBL] [Abstract][Full Text] [Related]
20. A distinctly regulated protein repair L-isoaspartylmethyltransferase from Arabidopsis thaliana. Mudgett MB; Clarke S Plant Mol Biol; 1996 Feb; 30(4):723-37. PubMed ID: 8624405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]