BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26849871)

  • 1. A Study of Domain Adaptation Classifiers Derived From Logistic Regression for the Task of Splice Site Prediction.
    Herndon N; Caragea D
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):75-83. PubMed ID: 26849871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A statistical approach for 5' splice site prediction using short sequence motifs and without encoding sequence data.
    Meher PK; Sahu TK; Rao AR; Wahi SD
    BMC Bioinformatics; 2014 Nov; 15():362. PubMed ID: 25420551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition.
    Meher PK; Sahu TK; Gahoi S; Satpathy S; Rao AR
    Gene; 2019 Jul; 705():113-126. PubMed ID: 31009682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets.
    Stanescu A; Caragea D
    BMC Syst Biol; 2015; 9 Suppl 5(Suppl 5):S1. PubMed ID: 26356316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.
    Yu W; Park T
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S1. PubMed ID: 25559769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction.
    Kamath U; Compton J; Islamaj-Doğan R; De Jong KA; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1387-98. PubMed ID: 22508909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo and In vitro methods to identify DNA sequence variants that alter RNA Splicing.
    Patel PN; Gorham JM; Ito K; Seidman CE
    Curr Protoc Hum Genet; 2018 Apr; 97(1):e60. PubMed ID: 30038698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMA: a comprehensive Bioconductor package for supervised classification with high dimensional data.
    Slawski M; Daumer M; Boulesteix AL
    BMC Bioinformatics; 2008 Oct; 9():439. PubMed ID: 18925941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies.
    Ramola R; Jain S; Radivojac P
    Pac Symp Biocomput; 2019; 24():124-135. PubMed ID: 30864316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regularized Least Squares Cancer classifiers from DNA microarray data.
    Ancona N; Maglietta R; D'Addabbo A; Liuni S; Pesole G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S2. PubMed ID: 16351746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing area under the ROC curve using semi-supervised learning.
    Wang S; Li D; Petrick N; Sahiner B; Linguraru MG; Summers RM
    Pattern Recognit; 2015 Jan; 48(1):276-287. PubMed ID: 25395692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain adaptation from multiple sources: a domain-dependent regularization approach.
    Duan L; Xu D; Tsang IW
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):504-18. PubMed ID: 24808555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New techniques for DNA sequence classification.
    Wang JT; Rozen S; Shapiro BA; Shasha D; Wang Z; Yin M
    J Comput Biol; 1999; 6(2):209-18. PubMed ID: 10421523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers.
    Regnier-Coudert O; McCall J; Lothian R; Lam T; McClinton S; N'dow J
    Artif Intell Med; 2012 May; 55(1):25-35. PubMed ID: 22206941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpliceIT: a hybrid method for splice signal identification based on probabilistic and biological inference.
    Malousi A; Chouvarda I; Koutkias V; Kouidou S; Maglaveras N
    J Biomed Inform; 2010 Apr; 43(2):208-17. PubMed ID: 19800027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of drug-disease associations based on ensemble meta paths and singular value decomposition.
    Wu G; Liu J; Yue X
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):134. PubMed ID: 30925858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for accurate identification of splice junctions based on hybrid algorithms.
    Mandal I
    J Biomol Struct Dyn; 2015; 33(6):1281-90. PubMed ID: 25203504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training.
    Jia P; Huang T; Duan S; Ge L; Yan J; Wang L
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26985898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.