These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26849879)

  • 21. Cool Bands: Wing bands decrease rate of heating, but not equilibrium temperature in Anartia fatima.
    Brashears J; Aiello A; Seymoure BM
    J Therm Biol; 2016 Feb; 56():100-8. PubMed ID: 26857983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat resistance throughout ontogeny: body size constrains thermal tolerance.
    Klockmann M; Günter F; Fischer K
    Glob Chang Biol; 2017 Feb; 23(2):686-696. PubMed ID: 27371939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria.
    Blanckenhorn WU; Gautier R; Nick M; Puniamoorthy N; Schäfer MA
    J Therm Biol; 2014 Dec; 46():1-9. PubMed ID: 25455934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life stages of an aphid living under similar thermal conditions differ in thermal performance.
    Zhao F; Hoffmann AA; Xing K; Ma CS
    J Insect Physiol; 2017 May; 99():1-7. PubMed ID: 28283383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ADAPTIVE SIGNIFICANCE OF PIGMENT POLYMORPHISMS IN COLIAS BUTTERFLIES, II. THERMOREGULATION AND PHOTOPERIODICALLY CONTROLLED MELANIN VARIATION IN Colias eurytheme.
    Watt WB
    Proc Natl Acad Sci U S A; 1969 Jul; 63(3):767-74. PubMed ID: 16591777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of developmental change in body size on ectotherm body temperature and behavioral thermoregulation: caterpillars in a heat-stressed environment.
    Nielsen ME; Papaj DR
    Oecologia; 2015 Jan; 177(1):171-9. PubMed ID: 25367578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altitudinal variation in bumble bee (Bombus) critical thermal limits.
    Oyen KJ; Giri S; Dillon ME
    J Therm Biol; 2016 Jul; 59():52-7. PubMed ID: 27264888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymorphism and predictability at the alpha-glycerophosphate dehydrogenase locus in Colias butterflies: gradients in allele frequency within single populations.
    Johnson GB
    Biochem Genet; 1976 Jun; 14(5-6):403-26. PubMed ID: 971290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly.
    Sniegula S; Janssens L; Stoks R
    Aquat Toxicol; 2017 May; 186():113-122. PubMed ID: 28282618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoregulatory Behavior Simultaneously Promotes and Forestalls Evolution in a Tropical Lizard.
    Muñoz MM; Losos JB
    Am Nat; 2018 Jan; 191(1):E15-E26. PubMed ID: 29244559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low temperatures impact species distributions of jumping spiders across a desert elevational cline.
    Brandt EE; Roberts KT; Williams CM; Elias DO
    J Insect Physiol; 2020 Apr; 122():104037. PubMed ID: 32087221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Arctic butterflies become smaller with rising temperatures.
    Bowden JJ; Eskildsen A; Hansen RR; Olsen K; Kurle CM; Høye TT
    Biol Lett; 2015 Oct; 11(10):. PubMed ID: 26445981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal traits for reproduction and recruitment differ between Arctic and Atlantic kelp Laminaria digitata.
    Martins N; Pearson GA; Bernard J; Serrão EA; Bartsch I
    PLoS One; 2020; 15(6):e0235388. PubMed ID: 32604405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity.
    Kleckova I; Konvicka M; Klecka J
    J Therm Biol; 2014 Apr; 41():50-8. PubMed ID: 24679972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.
    Klockmann M; Wallmeyer L; Fischer K
    Insect Sci; 2018 Oct; 25(5):894-904. PubMed ID: 28294575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air temperature drives the evolution of mid-infrared optical properties of butterfly wings.
    Krishna A; Nie X; Briscoe AD; Lee J
    Sci Rep; 2021 Dec; 11(1):24143. PubMed ID: 34921152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.