These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26850859)
1. Temporal variability of micro-organic contaminants in lowland chalk catchments: New insights into contaminant sources and hydrological processes. Manamsa K; Lapworth DJ; Stuart ME Sci Total Environ; 2016 Oct; 568():566-577. PubMed ID: 26850859 [TBL] [Abstract][Full Text] [Related]
2. Persistent and emerging micro-organic contaminants in Chalk groundwater of England and France. Lapworth DJ; Baran N; Stuart ME; Manamsa K; Talbot J Environ Pollut; 2015 Aug; 203():214-225. PubMed ID: 25882715 [TBL] [Abstract][Full Text] [Related]
3. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Manamsa K; Crane E; Stuart M; Talbot J; Lapworth D; Hart A Sci Total Environ; 2016 Oct; 568():712-726. PubMed ID: 27073165 [TBL] [Abstract][Full Text] [Related]
4. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia). Koroša A; Auersperger P; Mali N Sci Total Environ; 2016 Nov; 571():1419-31. PubMed ID: 27395079 [TBL] [Abstract][Full Text] [Related]
5. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Stuart ME; Lapworth DJ; Thomas J; Edwards L Sci Total Environ; 2014 Jan; 468-469():564-77. PubMed ID: 24055671 [TBL] [Abstract][Full Text] [Related]
6. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
7. Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium). Hakoun V; Orban P; Dassargues A; Brouyère S Environ Pollut; 2017 Apr; 223():185-199. PubMed ID: 28139324 [TBL] [Abstract][Full Text] [Related]
8. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants. White D; Lapworth DJ; Stuart ME; Williams PJ Sci Total Environ; 2016 Aug; 562():962-973. PubMed ID: 27155350 [TBL] [Abstract][Full Text] [Related]
9. Temporal and spatial analysis of nitrate concentrations from the Frome and Piddle catchments in Dorset (UK) for water years 1978 to 2007: evidence for nitrate breakthrough? Howden NJ; Burt TP Sci Total Environ; 2008 Dec; 407(1):507-26. PubMed ID: 18947858 [TBL] [Abstract][Full Text] [Related]
10. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use. Pacioglu O; Moldovan OT Environ Sci Pollut Res Int; 2016 Mar; 23(5):4729-40. PubMed ID: 26531711 [TBL] [Abstract][Full Text] [Related]
11. Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions. Osorio V; Marcé R; Pérez S; Ginebreda A; Cortina JL; Barceló D Sci Total Environ; 2012 Dec; 440():3-13. PubMed ID: 23022258 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous hyporheic zone dechlorination of a TCE groundwater plume discharging to an urban river reach. Freitas JG; Rivett MO; Roche RS; Durrant Neé Cleverly M; Walker C; Tellam JH Sci Total Environ; 2015 Feb; 505():236-52. PubMed ID: 25461025 [TBL] [Abstract][Full Text] [Related]
13. Macronutrient status of UK groundwater: Nitrogen, phosphorus and organic carbon. Stuart ME; Lapworth DJ Sci Total Environ; 2016 Dec; 572():1543-1560. PubMed ID: 27020241 [TBL] [Abstract][Full Text] [Related]
14. A perceptual approach to address complex water management issues in lowland permeable catchments. Homan T; Howden NJK; Barden R; Kasprzyk-Hordern B; Hofman J Water Res; 2024 May; 254():121406. PubMed ID: 38452526 [TBL] [Abstract][Full Text] [Related]
15. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes. Estevez E; Cabrera Mdel C; Fernández-Vera JR; Molina-Díaz A; Robles-Molina J; Palacios-Díaz Mdel P Sci Total Environ; 2016 May; 551-552():186-96. PubMed ID: 26874774 [TBL] [Abstract][Full Text] [Related]
16. [Relationship between groundwater quality index of nutrition element and organic matter in riparian zone and water quality in river]. Hua-Shan X; Tong-Qian Z; Hong-Q M; Zong-Xue X; Chao-Hon M Huan Jing Ke Xue; 2011 Apr; 32(4):955-62. PubMed ID: 21717732 [TBL] [Abstract][Full Text] [Related]
17. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales. Weatherill J; Krause S; Voyce K; Drijfhout F; Levy A; Cassidy N J Contam Hydrol; 2014 Mar; 158():38-54. PubMed ID: 24424265 [TBL] [Abstract][Full Text] [Related]
18. Contaminant mobilization from the vadose zone to groundwater during experimental river flooding events. Sultana R; Johnson RH; Tigar AD; Wahl TJ; Meurer CE; Hoss KN; Xu S; Paradis CJ J Contam Hydrol; 2024 Jul; 265():104391. PubMed ID: 38936239 [TBL] [Abstract][Full Text] [Related]
19. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations. Fretwell BA; Burgess WG; Barker JA; Jefferies NL J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606 [TBL] [Abstract][Full Text] [Related]
20. Quantification and risk assessment of polar organic contaminants in two chalk streams in Hampshire, UK using the Chemcatcher passive sampler. Robinson RFA; Mills GA; Grabic R; Bořík A; Fones GR Sci Total Environ; 2024 Aug; 939():173316. PubMed ID: 38782290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]