These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 26850861)
61. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Wang T; Qian T; Huo L; Li Y; Zhao D Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830 [TBL] [Abstract][Full Text] [Related]
62. [Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence iron (nZVI) catalyzed hydrogen peroxide (H2O2)]. Fu RB Huan Jing Ke Xue; 2014 Apr; 35(4):1351-7. PubMed ID: 24946587 [TBL] [Abstract][Full Text] [Related]
63. Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract: Enhanced transport and application for hexavalent chromium removal from water and soil. Yang J; Wang S; Xu N; Ye Z; Yang H; Huangfu X J Hazard Mater; 2021 Oct; 419():126461. PubMed ID: 34186421 [TBL] [Abstract][Full Text] [Related]
64. [Experimental study on the remediation of chromium contaminated groundwater with PRB media]. Zhu WH; Dong LF; Wang XR; Zhai YL Huan Jing Ke Xue; 2013 Jul; 34(7):2711-7. PubMed ID: 24028003 [TBL] [Abstract][Full Text] [Related]
65. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. Liu T; Zhao L; Sun D; Tan X J Hazard Mater; 2010 Dec; 184(1-3):724-730. PubMed ID: 20855161 [TBL] [Abstract][Full Text] [Related]
66. Floatable, macroporous structured alginate sphere supporting iron nanoparticles used for emergent Cr(VI) spill treatment. Huang JF; Li YT; Wu JH; Cao PY; Liu YL; Jiang GB Carbohydr Polym; 2016 Aug; 146():115-22. PubMed ID: 27112857 [TBL] [Abstract][Full Text] [Related]
67. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. Shi Z; Fan D; Johnson RL; Tratnyek PG; Nurmi JT; Wu Y; Williams KH J Contam Hydrol; 2015 Oct; 181():17-35. PubMed ID: 25841976 [TBL] [Abstract][Full Text] [Related]
68. Effectiveness of zerovalent iron and nickel catalysts for degrading chlorinated solvents and n-nitrosodimethylamine in natural groundwater. Schaefer CE; Topoleski C; Fuller ME Water Environ Res; 2007 Jan; 79(1):57-62. PubMed ID: 17290972 [TBL] [Abstract][Full Text] [Related]
69. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Qian L; Chen Y; Ouyang D; Zhang W; Han L; Yan J; Kvapil P; Chen M Sci Total Environ; 2020 Jan; 698():134215. PubMed ID: 31494413 [TBL] [Abstract][Full Text] [Related]
70. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. Busch J; Meißner T; Potthoff A; Oswald SE J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524 [TBL] [Abstract][Full Text] [Related]
71. Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Niu SF; Liu Y; Xu XH; Lou ZH J Zhejiang Univ Sci B; 2005 Oct; 6(10):1022-7. PubMed ID: 16187417 [TBL] [Abstract][Full Text] [Related]
72. SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity. Sun X; Yan Y; Li J; Han W; Wang L J Hazard Mater; 2014 Feb; 266():26-33. PubMed ID: 24374562 [TBL] [Abstract][Full Text] [Related]
73. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide. Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013 [TBL] [Abstract][Full Text] [Related]
74. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Laumann S; Micić V; Lowry GV; Hofmann T Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276 [TBL] [Abstract][Full Text] [Related]
75. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential. Zhu S; Huang X; Wang D; Wang L; Ma F Chemosphere; 2018 Sep; 207():50-59. PubMed ID: 29772424 [TBL] [Abstract][Full Text] [Related]
76. Thermally enhanced in situ bioremediation of groundwater contaminated with chlorinated solvents - A field test. Němeček J; Steinová J; Špánek R; Pluhař T; Pokorný P; Najmanová P; Knytl V; Černík M Sci Total Environ; 2018 May; 622-623():743-755. PubMed ID: 29223901 [TBL] [Abstract][Full Text] [Related]
77. Reduction and immobilization of chromium(VI) by nano-scale Fe0 particles supported on reproducible PAA/PVDF membrane. Li S; Li T; Xiu Z; Jin Z J Environ Monit; 2010 May; 12(5):1153-8. PubMed ID: 21491683 [TBL] [Abstract][Full Text] [Related]
78. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861 [TBL] [Abstract][Full Text] [Related]
79. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. Dong J; Yu J; Bao Q Environ Sci Pollut Res Int; 2018 Dec; 25(34):34392-34402. PubMed ID: 30306441 [TBL] [Abstract][Full Text] [Related]
80. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]