BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 26851071)

  • 1. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.
    Alamo L; Qi D; Wriggers W; Pinto A; Zhu J; Bilbao A; Gillilan RE; Hu S; Padrón R
    J Mol Biol; 2016 Mar; 428(6):1142-1164. PubMed ID: 26851071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.
    Alamo L; Wriggers W; Pinto A; Bártoli F; Salazar L; Zhao FQ; Craig R; Padrón R
    J Mol Biol; 2008 Dec; 384(4):780-97. PubMed ID: 18951904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion.
    Pinto A; Sánchez F; Alamo L; Padrón R
    J Struct Biol; 2012 Dec; 180(3):469-78. PubMed ID: 22982253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic model of a myosin filament in the relaxed state.
    Woodhead JL; Zhao FQ; Craig R; Egelman EH; Alamo L; Padrón R
    Nature; 2005 Aug; 436(7054):1195-9. PubMed ID: 16121187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function.
    Alamo L; Koubassova N; Pinto A; Gillilan R; Tsaturyan A; Padrón R
    Biophys Rev; 2017 Oct; 9(5):461-480. PubMed ID: 28871556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms.
    Padrón R; Ma W; Duno-Miranda S; Koubassova N; Lee KH; Pinto A; Alamo L; Bolaños P; Tsaturyan A; Irving T; Craig R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11865-11874. PubMed ID: 32444484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 7-stranded structure of relaxed scallop muscle myosin filaments: support for a common head configuration in myosin-regulated muscles.
    Al-Khayat HA; Morris EP; Squire JM
    J Struct Biol; 2009 May; 166(2):183-94. PubMed ID: 19248832
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Sulbarán G; Biasutto A; Méndez F; Pinto A; Alamo L; Padrón R
    Biochem Biophys Res Commun; 2020 Mar; 524(1):198-204. PubMed ID: 31983430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-head interaction characterizes the relaxed state of Limulus muscle myosin filaments.
    Zhao FQ; Craig R; Woodhead JL
    J Mol Biol; 2009 Jan; 385(2):423-31. PubMed ID: 18976661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow myosin ATP turnover in the super-relaxed state in tarantula muscle.
    Naber N; Cooke R; Pate E
    J Mol Biol; 2011 Sep; 411(5):943-50. PubMed ID: 21763701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments.
    Brito R; Alamo L; Lundberg U; Guerrero JR; Pinto A; Sulbarán G; Gawinowicz MA; Craig R; Padrón R
    J Mol Biol; 2011 Nov; 414(1):44-61. PubMed ID: 21959262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications.
    Woodhead JL; Zhao FQ; Craig R
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8561-6. PubMed ID: 23650385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an atomic model of the thick filaments of muscle.
    Padrón R; Alamo L; Murgich J; Craig R
    J Mol Biol; 1998 Jan; 275(1):35-41. PubMed ID: 9451437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments.
    Craig R; Padrón R; Kendrick-Jones J
    J Cell Biol; 1987 Sep; 105(3):1319-27. PubMed ID: 2958483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease.
    Alamo L; Pinto A; Sulbarán G; Mavárez J; Padrón R
    Biophys Rev; 2018 Oct; 10(5):1465-1477. PubMed ID: 28871552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variants of the myosin interacting-heads motif.
    Padrón R; Dutta D; Craig R
    J Gen Physiol; 2023 Jan; 155(1):. PubMed ID: 36346431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between myosin head conformation and the thick filament backbone structure.
    Hu Z; Taylor DW; Edwards RJ; Taylor KA
    J Struct Biol; 2017 Dec; 200(3):334-342. PubMed ID: 28964844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.
    Márquez G; Pinto A; Alamo L; Baumann B; Ye F; Winkler H; Taylor K; Padrón R
    J Struct Biol; 2014 May; 186(2):265-72. PubMed ID: 24727133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the super- and hyper-relaxed states of myosin II.
    Craig R; Padrón R
    J Gen Physiol; 2022 Jan; 154(1):. PubMed ID: 34889960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxed tarantula skeletal muscle has two ATP energy-saving mechanisms.
    Ma W; Duno-Miranda S; Irving T; Craig R; Padrón R
    J Gen Physiol; 2021 Mar; 153(3):. PubMed ID: 33480967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.