These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26851168)

  • 1. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.
    Deep A; Sharma AL; Mohanta GC; Kumar P; Kim KH
    Waste Manag; 2016 May; 51():190-195. PubMed ID: 26851168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of pure ZnO nanoparticles from spent Zn-MnO₂ alkaline batteries.
    Deep A; Kumar K; Kumar P; Kumar P; Sharma AL; Gupta B; Bharadwaj LM
    Environ Sci Technol; 2011 Dec; 45(24):10551-6. PubMed ID: 22050779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.
    Ma Y; Cui Y; Zuo X; Huang S; Hu K; Xiao X; Nan J
    Waste Manag; 2014 Oct; 34(10):1793-9. PubMed ID: 24906867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.
    Ippolito NM; Belardi G; Medici F; Piga L
    Waste Manag; 2016 May; 51():182-189. PubMed ID: 26777778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing and examining e-waste recycling process: methodology and case studies.
    Li J; He X; Zeng X
    Environ Technol; 2017 Mar; 38(6):652-660. PubMed ID: 27367434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of industrial valuable metals from household battery waste.
    Ebin B; Petranikova M; Steenari BM; Ekberg C
    Waste Manag Res; 2019 Feb; 37(2):168-175. PubMed ID: 30632933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.
    Wang X; Gaustad G; Babbitt CW
    Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategic exploration of battery waste management: A game-theoretic approach.
    Kaushal RK; Nema AK; Chaudhary J
    Waste Manag Res; 2015 Jul; 33(7):681-9. PubMed ID: 26060193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology.
    Tanong K; Coudert L; Chartier M; Mercier G; Blais JF
    Environ Technol; 2017 Dec; 38(24):3167-3179. PubMed ID: 28162038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of three different management options for spent alkaline batteries.
    Xará S; Almeida MF; Costa C
    Waste Manag; 2015 Sep; 43():460-84. PubMed ID: 26119009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.
    Abid Charef S; Affoune AM; Caballero A; Cruz-Yusta M; Morales J
    Waste Manag; 2017 Oct; 68():518-526. PubMed ID: 28669497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.
    Terazono A; Oguchi M; Iino S; Mogi S
    Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Battery related cobalt and REE flows in WEEE treatment.
    Sommer P; Rotter VS; Ueberschaar M
    Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.
    Bertuol DA; Machado CM; Silva ML; Calgaro CO; Dotto GL; Tanabe EH
    Waste Manag; 2016 May; 51():245-251. PubMed ID: 26970842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc Oxide Nanoparticles from Waste Zn-C Battery via Thermal Route: Characterization and Properties.
    Farzana R; Rajarao R; Behera PR; Hassan K; Sahajwalla V
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30213055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative approach to recover the metal values from spent lithium-ion batteries.
    Barik SP; Prabaharan G; Kumar B
    Waste Manag; 2016 May; 51():222-226. PubMed ID: 26553316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.