These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26851204)

  • 1. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth.
    Jain A; Thakur D; Ghoshal G; Katare OP; Shivhare US
    Int J Biol Macromol; 2016 Jun; 87():101-13. PubMed ID: 26851204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: An approach to enhance oral absorption of lycopene in rats in vivo.
    Jain A; Thakur D; Ghoshal G; Katare OP; Singh B; Shivhare US
    Int J Biol Macromol; 2016 Dec; 93(Pt A):746-756. PubMed ID: 27575434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron microencapsulation in gum tragacanth using solvent evaporation method.
    Asghari-Varzaneh E; Shahedi M; Shekarchizadeh H
    Int J Biol Macromol; 2017 Oct; 103():640-647. PubMed ID: 28528002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification.
    Li Y; Zhang X; Sun N; Wang Y; Lin S
    Int J Biol Macromol; 2018 Dec; 120(Pt A):783-788. PubMed ID: 30171945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality.
    Thakur D; Jain A; Ghoshal G; Shivhare US; Katare OP
    AAPS PharmSciTech; 2017 Jul; 18(5):1447-1459. PubMed ID: 28550604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.
    Ghorbani Gorji S; Ghorbani Gorji E; Mohammadifar MA; Zargaraan A
    Int J Biol Macromol; 2014 Jun; 67():503-11. PubMed ID: 24565900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of vanillin/β-cyclodexterin inclusion microcapsules using flax seed gum-rice bran protein complex coacervates.
    Hasanvand E; Rafe A
    Int J Biol Macromol; 2019 Jun; 131():60-66. PubMed ID: 30872048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex coacervation of soybean protein isolate and chitosan.
    Huang GQ; Sun YT; Xiao JX; Yang J
    Food Chem; 2012 Nov; 135(2):534-9. PubMed ID: 22868125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of beta-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy.
    Schmitt C; Sanchez C; Lamprecht A; Renard D; Lehr C; de Kruif CG; Hardy J
    Colloids Surf B Biointerfaces; 2001 Mar; 20(3):267-280. PubMed ID: 11172982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microencapsulation of oils using whey protein/gum Arabic coacervates.
    Weinbreck F; Minor M; de Kruif CG
    J Microencapsul; 2004 Sep; 21(6):667-79. PubMed ID: 15762323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.
    Li Y; Zhang X; Zhao Y; Ding J; Lin S
    Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Coacervation Between Gelatin and Chia Mucilage as an Alternative of Encapsulating Agents.
    Hernández-Nava R; López-Malo A; Palou E; Ramírez-Corona N; Jiménez-Munguía MT
    J Food Sci; 2019 Jun; 84(6):1281-1287. PubMed ID: 31066918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Oxidative Stability of Cold-pressed Sesame Oil Microcapsules Prepared by Complex Coacervation.
    Dai HH; Li XD; Wei AC; Wang XD; Wang DY
    J Oleo Sci; 2020 Jul; 69(7):685-692. PubMed ID: 32522944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate.
    Eghbal N; Yarmand MS; Mousavi M; Degraeve P; Oulahal N; Gharsallaoui A
    Carbohydr Polym; 2016 Oct; 151():947-956. PubMed ID: 27474643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of Theophylline in Gelatin A-Pectin Complex Coacervates.
    Devi N; Deka C; Nath P; Kakati DK
    Adv Exp Med Biol; 2018; 1052():63-74. PubMed ID: 29785481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic compatibility of gelatin and tragacanth gum in aqueous systems.
    Molaahmadi Bahraseman N; Shekarchizadeh H; Goli SAH
    Food Chem; 2022 Mar; 373(Pt B):131584. PubMed ID: 34799129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex coacervate formation between hemp protein isolate and gum Arabic: Formulation and characterization.
    Plati F; Ritzoulis C; Pavlidou E; Paraskevopoulou A
    Int J Biol Macromol; 2021 Jul; 182():144-153. PubMed ID: 33836200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates.
    Xiao JX; Zhu CP; Cheng LY; Yang J; Huang GQ
    Int J Biol Macromol; 2018 Oct; 117():315-322. PubMed ID: 29807084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.