These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method. Zhou H; Zhou Y Protein Sci; 2003 Jul; 12(7):1547-55. PubMed ID: 12824500 [TBL] [Abstract][Full Text] [Related]
7. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Natt NK; Kaur H; Raghava GP Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482 [TBL] [Abstract][Full Text] [Related]
8. PRIMSIPLR: prediction of inner-membrane situated pore-lining residues for alpha-helical transmembrane proteins. Nguyen D; Helms V; Lee PH Proteins; 2014 Jul; 82(7):1503-11. PubMed ID: 24464816 [TBL] [Abstract][Full Text] [Related]
9. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming. Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402 [TBL] [Abstract][Full Text] [Related]
10. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Fuchs A; Kirschner A; Frishman D Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938 [TBL] [Abstract][Full Text] [Related]
11. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach. Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350 [TBL] [Abstract][Full Text] [Related]
12. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. Sawhney A; Li J; Liao L Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287 [TBL] [Abstract][Full Text] [Related]
13. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. Kumar M; Gromiha MM; Raghava GP J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method. Bagos PG; Liakopoulos TD; Hamodrakas SJ BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112 [TBL] [Abstract][Full Text] [Related]
15. Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. Mahalingam R; Peng HP; Yang AS J Theor Biol; 2014 Feb; 343():154-61. PubMed ID: 24211525 [TBL] [Abstract][Full Text] [Related]
16. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. Langelaan DN; Wieczorek M; Blouin C; Rainey JK J Chem Inf Model; 2010 Dec; 50(12):2213-20. PubMed ID: 21090591 [TBL] [Abstract][Full Text] [Related]
17. Protein secondary structure prediction with SPARROW. Bettella F; Rasinski D; Knapp EW J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407 [TBL] [Abstract][Full Text] [Related]
18. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. Adamian L; Liang J J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538 [TBL] [Abstract][Full Text] [Related]
19. TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins. Garrow AG; Agnew A; Westhead DR BMC Bioinformatics; 2005 Mar; 6():56. PubMed ID: 15769290 [TBL] [Abstract][Full Text] [Related]
20. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs. Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]