These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26851403)

  • 1. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.
    Cheng C; Zhao X; Zhang M; Bai F
    FEMS Yeast Res; 2016 Mar; 16(2):fow010. PubMed ID: 26851403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.
    Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains.
    Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D
    Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1.
    Zhang MM; Zhao XQ; Cheng C; Bai FW
    Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.
    Liu X; Zhang X; Zhang Z
    J Biotechnol; 2014 Oct; 187():116-23. PubMed ID: 25093933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae.
    Oh EJ; Wei N; Kwak S; Kim H; Jin YS
    J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.
    Geng P; Zhang L; Shi GY
    World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pneumocystis carinii expresses an active Rtt109 histone acetyltransferase.
    Kottom TJ; Han J; Zhang Z; Limper AH
    Am J Respir Cell Mol Biol; 2011 Jun; 44(6):768-76. PubMed ID: 20656950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae.
    Takabatake A; Kawazoe N; Izawa S
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2805-14. PubMed ID: 25503505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.
    Zhang JG; Liu XY; He XP; Guo XN; Lu Y; Zhang BR
    Biotechnol Lett; 2011 Feb; 33(2):277-84. PubMed ID: 20953665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.
    Li BZ; Yuan YJ
    Appl Microbiol Biotechnol; 2010 May; 86(6):1915-24. PubMed ID: 20309542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions.
    Yang JH; Freudenreich CH
    DNA Repair (Amst); 2010 Apr; 9(4):414-20. PubMed ID: 20083442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.
    Ding J; Holzwarth G; Penner MH; Patton-Vogt J; Bakalinsky AT
    FEMS Microbiol Lett; 2015 Jan; 362(3):1-7. PubMed ID: 25673654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid.
    Zhang M; Zhang K; Mehmood MA; Zhao ZK; Bai F; Zhao X
    Bioresour Technol; 2017 Dec; 245(Pt B):1461-1468. PubMed ID: 28606754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose.
    Ismail KS; Sakamoto T; Hasunuma T; Zhao XQ; Kondo A
    Biotechnol J; 2014 Dec; 9(12):1519-25. PubMed ID: 24924214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.
    Swinnen S; Fernández-Niño M; González-Ramos D; van Maris AJ; Nevoigt E
    FEMS Yeast Res; 2014 Jun; 14(4):642-53. PubMed ID: 24645649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound.
    Ruotolo R; Tosi F; Vernarecci S; Ballario P; Mai A; Filetici P; Ottonello S
    Genomics; 2010 Nov; 96(5):272-80. PubMed ID: 20732410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability.
    Gurdo N; Novelli Poisson GF; Juárez ÁB; Rios de Molina MC; Galvagno MA
    J Appl Microbiol; 2018 Sep; 125(3):766-776. PubMed ID: 29770550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
    Ding J; Holzwarth G; Bradford CS; Cooley B; Yoshinaga AS; Patton-Vogt J; Abeliovich H; Penner MH; Bakalinsky AT
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8667-80. PubMed ID: 26051671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.
    Chen Y; Stabryla L; Wei N
    Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.