BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 26851527)

  • 1. Mechanical properties of normal and osteoarthritic human articular cartilage.
    Robinson DL; Kersh ME; Walsh NC; Ackland DC; de Steiger RN; Pandy MG
    J Mech Behav Biomed Mater; 2016 Aug; 61():96-109. PubMed ID: 26851527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage.
    Brown CP; Nguyen TC; Moody HR; Crawford RW; Oloyede A
    Proc Inst Mech Eng H; 2009 Aug; 223(6):643-52. PubMed ID: 19743631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biphasic visco-hyperelastic damage model for articular cartilage: application to micromechanical modelling of the osteoarthritis-induced degradation behaviour.
    Liu D; Ma S; Stoffel M; Markert B
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1055-1077. PubMed ID: 31802293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of cartilage mechanical behaviour to spatial variations in material properties.
    Whiteley JP; Brown CP; Gaffney EA
    J Mech Behav Biomed Mater; 2024 Aug; 156():106575. PubMed ID: 38824865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage.
    Ebrahimi M; Finnilä MAJ; Turkiewicz A; Englund M; Saarakkala S; Korhonen RK; Tanska P
    Ann Biomed Eng; 2021 Sep; 49(9):2622-2634. PubMed ID: 34341898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specimen-specific predictions of contact stress under physiological loading in the human hip: validation and sensitivity studies.
    Henak CR; Kapron AL; Anderson AE; Ellis BJ; Maas SA; Weiss JA
    Biomech Model Mechanobiol; 2014 Apr; 13(2):387-400. PubMed ID: 23736783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolving large-strain shear responses of progressively osteoarthritic human cartilage.
    Maier F; Lewis CG; Pierce DM
    Osteoarthritis Cartilage; 2019 May; 27(5):810-822. PubMed ID: 30660720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.
    Butz KD; Chan DD; Nauman EA; Neu CP
    J Biomech; 2011 Oct; 44(15):2667-72. PubMed ID: 21920526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2016 Jul; 49(10):2053-2059. PubMed ID: 27260020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on the mechanical quality of articular cartilage - implications for the diagnosis of osteoarthritis.
    Knecht S; Vanwanseele B; Stüssi E
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):999-1012. PubMed ID: 16979270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific elastic and viscoelastic biomechanical properties of healthy and osteoarthritic human knee joint articular cartilage.
    Linus A; Tanska P; Nippolainen E; Tiitu V; Töyras J; Korhonen RK; Afara IO; Mononen ME
    J Biomech; 2024 May; 169():112135. PubMed ID: 38744145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hyperelastic models for the non-linear and non-uniform high strain-rate mechanics of tibial cartilage.
    Deneweth JM; McLean SG; Arruda EM
    J Biomech; 2013 Jun; 46(10):1604-10. PubMed ID: 23669276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.
    Owen JR; Wayne JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):461-71. PubMed ID: 20700624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Uniaxial Stress-Strain Relationship of Hyperelastic Material Models of Rubber Cracks in the Platens of Papermaking Machines Based on Nonlinear Strain and Stress Measurements with the Finite Element Method.
    Nguyen HD; Huang SC
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.