BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 26851639)

  • 21. A photoreactive analog of allopregnanolone enables identification of steroid-binding sites in a nicotinic acetylcholine receptor.
    Yu Z; Chiara DC; Savechenkov PY; Bruzik KS; Cohen JB
    J Biol Chem; 2019 May; 294(19):7892-7903. PubMed ID: 30923128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple transmembrane binding sites for p-trifluoromethyldiazirinyl-etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor.
    Hamouda AK; Stewart DS; Husain SS; Cohen JB
    J Biol Chem; 2011 Jun; 286(23):20466-77. PubMed ID: 21498509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of a benzomorphan opiate with acetylcholinesterase and the nicotinic acetylcholine receptor.
    Coleman BA; Michel L; Oswald R
    Mol Pharmacol; 1987 Oct; 32(4):456-62. PubMed ID: 3670280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Functional interaction between nicotinic cholinergic receptors and Na, K-ATPase in the skeletal muscles].
    Krivoĭ II; Drabkina TM; Dobretsov MG; Vasil'ev AN; Kravtsova VV; Eaton MJ; Skachkov SN; Mandel F
    Ross Fiziol Zh Im I M Sechenova; 2004 Jan; 90(1):59-72. PubMed ID: 15143493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The muscarinic antagonists aprophen and benactyzine are noncompetitive inhibitors of the nicotinic acetylcholine receptor.
    Amitai G; Herz JM; Bruckstein R; Luz-Chapman S
    Mol Pharmacol; 1987 Nov; 32(5):678-85. PubMed ID: 3683366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor.
    Caballero-Rivera D; Cruz-Nieves OA; Oyola-Cintrón J; Torres-Núñez DA; Otero-Cruz JD; Lasalde-Dominicci JA
    Channels (Austin); 2011; 5(4):345-56. PubMed ID: 21785268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of CI-1002 and CI-1017 on spontaneous synaptic activity and on the nicotinic acetylcholine receptor of Torpedo electric organ.
    Ros E; Aleu J; Marsal J; Solsona C
    Eur J Pharmacol; 2000 Feb; 390(1-2):7-13. PubMed ID: 10708701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chain length dependence of the interactions of bisquaternary ligands with the Torpedo nicotinic acetylcholine receptor.
    Carter CR; Cao L; Kawai H; Smith PA; Dryden WF; Raftery MA; Dunn SM
    Biochem Pharmacol; 2007 Feb; 73(3):417-26. PubMed ID: 17118342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor.
    Kasheverov IE; Zhmak MN; Fish A; Rucktooa P; Khruschov AY; Osipov AV; Ziganshin RH; D'hoedt D; Bertrand D; Sixma TK; Smit AB; Tsetlin VI
    J Neurochem; 2009 Nov; 111(4):934-44. PubMed ID: 19712060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.
    Ring A; Strom BO; Turner SR; Timperley CM; Bird M; Green AC; Chad JE; Worek F; Tattersall JE
    PLoS One; 2015; 10(8):e0135811. PubMed ID: 26274808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [3H]Benzophenone photolabeling identifies state-dependent changes in nicotinic acetylcholine receptor structure.
    Garcia G; Chiara DC; Nirthanan S; Hamouda AK; Stewart DS; Cohen JB
    Biochemistry; 2007 Sep; 46(36):10296-307. PubMed ID: 17685589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Searching for putative binding sites of the bispyridinium compound MB327 in the nicotinic acetylcholine receptor.
    Wein T; Höfner G; Rappenglück S; Sichler S; Niessen KV; Seeger T; Worek F; Thiermann H; Wanner KT
    Toxicol Lett; 2018 Sep; 293():184-189. PubMed ID: 29097222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy.
    Schmidt EK; Liebermann T; Kreiter M; Jonczyk A; Naumann R; Offenhäusser A; Neumann E; Kukol A; Maelicke A; Knoll W
    Biosens Bioelectron; 1998 Sep; 13(6):585-91. PubMed ID: 9828354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane.
    Olivera-Bravo S; Ivorra I; Morales A
    Br J Pharmacol; 2005 Jan; 144(1):88-97. PubMed ID: 15644872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcium channel effectors are potent non-competitive blockers of acetylcholine receptors.
    Adam LP; Henderson EG
    Pflugers Arch; 1990 Jul; 416(5):586-93. PubMed ID: 2172919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring ion channels on solid supported membranes.
    Schulz P; Dueck B; Mourot A; Hatahet L; Fendler K
    Biophys J; 2009 Jul; 97(1):388-96. PubMed ID: 19580777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of a Series of Structurally Diverse MB327 Derivatives and Their Affinity Characterization at the Nicotinic Acetylcholine Receptor.
    Rappenglück S; Sichler S; Höfner G; Wein T; Niessen KV; Seeger T; Paintner FF; Worek F; Thiermann H; Wanner KT
    ChemMedChem; 2018 Sep; 13(17):1806-1816. PubMed ID: 29974635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature and ionic strength dependence of quinacrine binding and quinacrine displacement elicited by high concentrations of agonists on the nicotinic acetylcholine receptor.
    Arias HR
    Arch Biochem Biophys; 1996 Sep; 333(1):1-11. PubMed ID: 8806747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.
    Padilla-Morales LF; Colón-Sáez JO; González-Nieves JE; Quesada-González O; Lasalde-Dominicci JA
    Biochim Biophys Acta; 2016 Jan; 1858(1):47-56. PubMed ID: 26454038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.