BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26851889)

  • 1. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins?
    Sergiev PV; Artemov AA; Prokhortchouk EB; Dontsova OA; Berezkin GV
    Aging (Albany NY); 2016 Feb; 8(2):260-71. PubMed ID: 26851889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of age-associated telomere shortening in long- and short-lived species of sea urchins.
    Francis N; Gregg T; Owen R; Ebert T; Bodnar A
    FEBS Lett; 2006 Aug; 580(19):4713-7. PubMed ID: 16876792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the bindin proteins of Strongylocentrotus franciscanus, S. purpuratus, and Lytechinus variegatus: sequences involved in the species specificity of fertilization.
    Minor JE; Fromson DR; Britten RJ; Davidson EH
    Mol Biol Evol; 1991 Nov; 8(6):781-95. PubMed ID: 1775065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans.
    Bodnar A
    Exp Gerontol; 2013 May; 48(5):525-30. PubMed ID: 23453931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, expression, and transcriptional regulation of the Strongylocentrotus franciscanus spec gene family encoding intracellular calcium-binding proteins.
    Villinski JT; Kiyama T; Dayal S; Zhang N; Liang S; Klein WH
    Dev Genes Evol; 2005 Aug; 215(8):410-22. PubMed ID: 15871032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Senescence and Longevity of Sea Urchins.
    Amir Y; Insler M; Giller A; Gutman D; Atzmon G
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32443861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longevity and lack of senescence in the red sea urchin Strongylocentrotus franciscanus.
    Ebert TA
    Exp Gerontol; 2008 Aug; 43(8):734-8. PubMed ID: 18550313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal-Level Genome Assembly of the Sea Urchin Lytechinus variegatus Substantially Improves Functional Genomic Analyses.
    Davidson PL; Guo H; Wang L; Berrio A; Zhang H; Chang Y; Soborowski AL; McClay DR; Fan G; Wray GA
    Genome Biol Evol; 2020 Jul; 12(7):1080-1086. PubMed ID: 32433766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional annotation of a hugely expanded nanos repertoire in Lytechinus variegatus, the green sea urchin.
    Pieplow C; Wessel G
    Mol Reprod Dev; 2023 May; 90(5):310-322. PubMed ID: 37039283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model.
    Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC
    Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first mitochondrial genome of the model echinoid Lytechinus variegatus and insights into Odontophoran phylogenetics.
    Bronstein O; Kroh A
    Genomics; 2019 Jul; 111(4):710-718. PubMed ID: 29660476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization and evolution of the actin gene family in sea urchins.
    Johnson PJ; Foran DR; Moore GP
    Mol Cell Biol; 1983 Oct; 3(10):1824-33. PubMed ID: 6646126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atypical changes in chromatin structure during development in the sea urchin, Lytechinus variegatus.
    Rowland RD; Rill RL
    Biochim Biophys Acta; 1987 Feb; 908(2):169-78. PubMed ID: 3814603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative damage and cellular defense mechanisms in sea urchin models of aging.
    Du C; Anderson A; Lortie M; Parsons R; Bodnar A
    Free Radic Biol Med; 2013 Oct; 63():254-63. PubMed ID: 23707327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins.
    Bodnar AG; Coffman JA
    Aging Cell; 2016 Aug; 15(4):778-87. PubMed ID: 27095483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative senescence in sea urchins.
    Ebert TA
    Exp Gerontol; 2019 Jul; 122():92-98. PubMed ID: 31063808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter.
    Branco PC; Borges JC; Santos MF; Jensch Junior BE; da Silva JR
    Mar Environ Res; 2013 Dec; 92():95-101. PubMed ID: 24080411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin.
    Polinski JM; Castellano KR; Buckley KM; Bodnar AG
    Cell Rep; 2024 Apr; 43(4):114021. PubMed ID: 38564335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins
    Hakim JA; Green GBH; Watts SA; Crowley MR; Morrow CD; Bej AK
    Curr Issues Mol Biol; 2021 Aug; 43(2):978-995. PubMed ID: 34563039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal-Level Genome Assembly of the Painted Sea Urchin Lytechinus pictus: A Genetically Enabled Model System for Cell Biology and Embryonic Development.
    Warner JF; Lord JW; Schreiter SA; Nesbit KT; Hamdoun A; Lyons DC
    Genome Biol Evol; 2021 Apr; 13(4):. PubMed ID: 33769486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.