These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26851894)
1. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment. Klinar D Bioresour Technol; 2016 Apr; 206():112-120. PubMed ID: 26851894 [TBL] [Abstract][Full Text] [Related]
2. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Peters JF; Iribarren D; Dufour J Environ Sci Technol; 2015 Apr; 49(8):5195-202. PubMed ID: 25830564 [TBL] [Abstract][Full Text] [Related]
3. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Woolf D; Lehmann J; Fisher EM; Angenent LT Environ Sci Technol; 2014 Jun; 48(11):6492-9. PubMed ID: 24787482 [TBL] [Abstract][Full Text] [Related]
4. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Li W; Dang Q; Brown RC; Laird D; Wright MM Bioresour Technol; 2017 Oct; 241():959-968. PubMed ID: 28637163 [TBL] [Abstract][Full Text] [Related]
5. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Haeldermans T; Campion L; Kuppens T; Vanreppelen K; Cuypers A; Schreurs S Bioresour Technol; 2020 Dec; 318():124083. PubMed ID: 32916464 [TBL] [Abstract][Full Text] [Related]
6. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Meyer S; Glaser B; Quicker P Environ Sci Technol; 2011 Nov; 45(22):9473-83. PubMed ID: 21961528 [TBL] [Abstract][Full Text] [Related]
7. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Park J; Lee Y; Ryu C; Park YK Bioresour Technol; 2014 Mar; 155():63-70. PubMed ID: 24423650 [TBL] [Abstract][Full Text] [Related]
8. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil? Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248 [TBL] [Abstract][Full Text] [Related]
9. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Wang H; Wang X; Cui Y; Xue Z; Ba Y Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506 [TBL] [Abstract][Full Text] [Related]
10. [Research progress on biochar carbon sequestration technology]. Jiang ZX; Zheng H; Li FM; Wang ZY Huan Jing Ke Xue; 2013 Aug; 34(8):3327-33. PubMed ID: 24191586 [TBL] [Abstract][Full Text] [Related]
11. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Roberts KG; Gloy BA; Joseph S; Scott NR; Lehmann J Environ Sci Technol; 2010 Jan; 44(2):827-33. PubMed ID: 20030368 [TBL] [Abstract][Full Text] [Related]
12. Biochar as a sorbent for contaminant management in soil and water: a review. Ahmad M; Rajapaksha AU; Lim JE; Zhang M; Bolan N; Mohan D; Vithanage M; Lee SS; Ok YS Chemosphere; 2014 Mar; 99():19-33. PubMed ID: 24289982 [TBL] [Abstract][Full Text] [Related]
13. Suitability of marginal biomass-derived biochars for soil amendment. Buss W; Graham MC; Shepherd JG; Mašek O Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369 [TBL] [Abstract][Full Text] [Related]
14. A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Nematian M; Keske C; Ng'ombe JN Waste Manag; 2021 Nov; 135():467-477. PubMed ID: 34626931 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Huff MD; Kumar S; Lee JW J Environ Manage; 2014 Dec; 146():303-308. PubMed ID: 25190598 [TBL] [Abstract][Full Text] [Related]
16. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Dunnigan L; Morton BJ; Ashman PJ; Zhang X; Kwong CW Waste Manag; 2018 Jul; 77():59-66. PubMed ID: 30008415 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727 [TBL] [Abstract][Full Text] [Related]
18. Characterization of human manure-derived biochar and energy-balance analysis of slow pyrolysis process. Liu X; Li Z; Zhang Y; Feng R; Mahmood IB Waste Manag; 2014 Sep; 34(9):1619-26. PubMed ID: 24961565 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Manyà JJ Environ Sci Technol; 2012 Aug; 46(15):7939-54. PubMed ID: 22775244 [TBL] [Abstract][Full Text] [Related]
20. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Méndez A; Tarquis AM; Saa-Requejo A; Guerrero F; Gascó G Chemosphere; 2013 Oct; 93(4):668-76. PubMed ID: 23891257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]