BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26851914)

  • 1. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments.
    Jagau TC; Krylov AI
    J Chem Phys; 2016 Feb; 144(5):054113. PubMed ID: 26851914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dyson orbitals within the fc-CVS-EOM-CCSD framework: theory and application to X-ray photoelectron spectroscopy of ground and excited states.
    Vidal ML; Krylov AI; Coriani S
    Phys Chem Chem Phys; 2020 Feb; 22(5):2693-2703. PubMed ID: 31696165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.
    Oana CM; Krylov AI
    J Chem Phys; 2007 Dec; 127(23):234106. PubMed ID: 18154374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing Electronic Wave Functions of Sodium-Doped Clusters: Dyson Orbitals, Anisotropy Parameters, and Ionization Cross-Sections.
    Gunina AO; Krylov AI
    J Phys Chem A; 2016 Dec; 120(49):9841-9856. PubMed ID: 27973800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Same but Different: Dipole-Stabilized Shape Resonances in CuF(-) and AgF(.).
    Jagau TC; Dao DB; Holtgrewe NS; Krylov AI; Mabbs R
    J Phys Chem Lett; 2015 Jul; 6(14):2786-93. PubMed ID: 26266864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex absorbing potentials within EOM-CC family of methods: theory, implementation, and benchmarks.
    Zuev D; Jagau TC; Bravaya KB; Epifanovsky E; Shao Y; Sundstrom E; Head-Gordon M; Krylov AI
    J Chem Phys; 2014 Jul; 141(2):024102. PubMed ID: 25027994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition-Dipole Moments for Electronic Excitations in Strong Magnetic Fields Using Equation-of-Motion and Linear Response Coupled-Cluster Theory.
    Hampe F; Stopkowicz S
    J Chem Theory Comput; 2019 Jul; 15(7):4036-4043. PubMed ID: 31141671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions.
    Jagau TC
    J Chem Phys; 2018 Jan; 148(2):024104. PubMed ID: 29331139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating tunnel and above-barrier ionization using complex-scaled coupled-cluster theory.
    Jagau TC
    J Chem Phys; 2016 Nov; 145(20):204115. PubMed ID: 27908117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach.
    Nanda KD; Krylov AI
    J Chem Phys; 2018 Oct; 149(16):164109. PubMed ID: 30384698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dyson-orbital concepts for description of electrons in molecules.
    Ortiz JV
    J Chem Phys; 2020 Aug; 153(7):070902. PubMed ID: 32828082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bound and continuum-embedded states of cyanopolyyne anions.
    Skomorowski W; Gulania S; Krylov AI
    Phys Chem Chem Phys; 2018 Feb; 20(7):4805-4817. PubMed ID: 29383350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States.
    Vidal ML; Feng X; Epifanovsky E; Krylov AI; Coriani S
    J Chem Theory Comput; 2019 May; 15(5):3117-3133. PubMed ID: 30964297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals.
    Oana CM; Krylov AI
    J Chem Phys; 2009 Sep; 131(12):124114. PubMed ID: 19791859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach.
    Jagau TC; Zuev D; Bravaya KB; Epifanovsky E; Krylov AI
    J Phys Chem Lett; 2014 Jan; 5(2):310-5. PubMed ID: 26270705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular ionization energies and ground- and ionic-state properties using a non-Dyson electron propagator approach.
    Trofimov AB; Schirmer J
    J Chem Phys; 2005 Oct; 123(14):144115. PubMed ID: 16238382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Optimization of Temporary Anions.
    Benda Z; Rickmeyer K; Jagau TC
    J Chem Theory Comput; 2018 Jul; 14(7):3468-3478. PubMed ID: 29883541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static polarizabilities for excited states within the spin-conserving and spin-flipping equation-of-motion coupled-cluster singles and doubles formalism: Theory, implementation, and benchmarks.
    Nanda KD; Krylov AI
    J Chem Phys; 2016 Nov; 145(20):204116. PubMed ID: 27908122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-Space Equation-of-Motion Coupled-Cluster Methods through Quadruples for Excited, Ionized, and Electron-Attached States.
    Fan PD; Kamiya M; Hirata S
    J Chem Theory Comput; 2007 May; 3(3):1036-46. PubMed ID: 26627422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-Averaged Pair Natural Orbitals for Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster.
    Peng C; Clement MC; Valeev EF
    J Chem Theory Comput; 2018 Nov; 14(11):5597-5607. PubMed ID: 30252467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.