These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 26852209)
1. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. Tang S; Yin H; Chen S; Peng H; Chang J; Liu Z; Dang Z J Hazard Mater; 2016 May; 308():335-42. PubMed ID: 26852209 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa. Liu Y; Gong AJ; Qiu LN; Li JR; Li FK Int J Environ Res Public Health; 2015 Sep; 12(9):11829-47. PubMed ID: 26393637 [TBL] [Abstract][Full Text] [Related]
3. [Characteristics and functional protein analysis of an effective decabromodiphenyl ether-degrading strain]. Chang JJ; Yin H; Qin HM; Ye JS; Peng H; Song XF Huan Jing Ke Xue; 2013 Oct; 34(10):4112-8. PubMed ID: 24364338 [TBL] [Abstract][Full Text] [Related]
4. Microbial degradation of 4-monobrominated diphenyl ether in an aerobic sludge and the DGGE analysis of diversity. Chen CY; Wang CK; Shih YH J Environ Sci Health B; 2010 Jul; 45(5):379-85. PubMed ID: 20512728 [TBL] [Abstract][Full Text] [Related]
5. A global review of polybrominated diphenyl ether flame retardant contamination in birds. Chen D; Hale RC Environ Int; 2010 Oct; 36(7):800-11. PubMed ID: 20557935 [TBL] [Abstract][Full Text] [Related]
6. [Biodegradation of decabromodiphenyl ether by intracellular enzyme obtained from Pseudomonas aeruginosa]. Shi GY; Yin H; Ye JS; Peng H; Zhang N; He BY Huan Jing Ke Xue; 2013 Apr; 34(4):1517-23. PubMed ID: 23798137 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Shi T; Chen SJ; Luo XJ; Zhang XL; Tang CM; Luo Y; Ma YJ; Wu JP; Peng XZ; Mai BX Chemosphere; 2009 Feb; 74(7):910-6. PubMed ID: 19059630 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of decabromodiphenyl ether (BDE-209) by white-rot fungus Phlebia lindtneri. Xu G; Wang J Chemosphere; 2014 Sep; 110():70-7. PubMed ID: 24880601 [TBL] [Abstract][Full Text] [Related]
9. Effect of cadmium ion on biodegradation of decabromodiphenyl ether (BDE-209) by Pseudomonas aeruginosa. Shi G; Yin H; Ye J; Peng H; Li J; Luo C J Hazard Mater; 2013 Dec; 263 Pt 2():711-7. PubMed ID: 24220201 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of two novel psychrotrophic decabromodiphenyl ether-degrading bacteria from river sediments. Wang L; Li Y; Zhang W; Niu L; Du J; Cai W; Wang J Environ Sci Pollut Res Int; 2016 Jun; 23(11):10371-10381. PubMed ID: 26517991 [TBL] [Abstract][Full Text] [Related]
11. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Tang S; Bai J; Yin H; Ye J; Peng H; Liu Z; Dang Z Chemosphere; 2014 Nov; 114():255-61. PubMed ID: 25113210 [TBL] [Abstract][Full Text] [Related]
12. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment. Yen JH; Liao WC; Chen WC; Wang YS J Hazard Mater; 2009 Jun; 165(1-3):518-24. PubMed ID: 19019534 [TBL] [Abstract][Full Text] [Related]
14. "Waste"-ing away: Presence of Cu ions influences microbial degradation kinetics and metabolite formation of the prevalent brominated flame retardant BDE-47. Chen J; Moe B; Zhu L; Le XC J Environ Sci (China); 2020 Jan; 87():421-424. PubMed ID: 31791515 [No Abstract] [Full Text] [Related]
15. Photolytic degradation products of two highly brominated flame retardants cause cytotoxicity and mRNA expression alterations in chicken embryonic hepatocytes. Su G; Letcher RJ; Crump D; Farmahin R; Giesy JP; Kennedy SW Environ Sci Technol; 2014 Oct; 48(20):12039-46. PubMed ID: 25222814 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether. Shih YH; Chou HL; Peng YH; Chang CY Bioresour Technol; 2012 Mar; 108():14-20. PubMed ID: 22265595 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. Yu Y; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2019 Jun; 668():958-965. PubMed ID: 31018474 [TBL] [Abstract][Full Text] [Related]
18. Cell changes and differential proteomic analysis during biodegradation of decabromodiphenyl ether (BDE-209) by Liu Y; Liu Z; Gong A; Qiu L; Zhang W; Li J; Li F; Bai Y; Li J; Gao G RSC Adv; 2019 Aug; 9(43):25048-25055. PubMed ID: 35528638 [TBL] [Abstract][Full Text] [Related]
19. New insights into the anaerobic microbial degradation of decabrominated diphenyl ether (BDE-209) in coastal marine sediments. Zhu X; Zhong Y; Wang H; Li D; Deng Y; Peng P Environ Pollut; 2019 Dec; 255(Pt 2):113151. PubMed ID: 31550656 [TBL] [Abstract][Full Text] [Related]
20. Predominance of BDE-209 and other higher brominated diphenyl ethers in eggs of white stork (Ciconia ciconia) colonies from Spain. Muñoz-Arnanz J; Sáez M; Aguirre JI; Hiraldo F; Baos R; Pacepavicius G; Alaee M; Jiménez B Environ Int; 2011 Apr; 37(3):572-6. PubMed ID: 21193230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]