These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26852240)

  • 61. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci.
    Kim JJ; Rothschild MF; Beever J; Rodriguez-Zas S; Dekkers JC
    J Anim Sci; 2005 Jun; 83(6):1229-40. PubMed ID: 15890800
    [TBL] [Abstract][Full Text] [Related]  

  • 62. QTL detection in maize testcross progenies as affected by related and unrelated testers.
    Frascaroli E; Canè MA; Pè ME; Pea G; Morgante M; Landi P
    Theor Appl Genet; 2009 Mar; 118(5):993-1004. PubMed ID: 19183862
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Whole-genome QTL analysis for MAGIC.
    Verbyla AP; George AW; Cavanagh CR; Verbyla KL
    Theor Appl Genet; 2014 Aug; 127(8):1753-70. PubMed ID: 24927820
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects.
    Technow F; Riedelsheimer C; Schrag TA; Melchinger AE
    Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs.
    Seye AI; Bauland C; Charcosset A; Moreau L
    Theor Appl Genet; 2020 Jun; 133(6):1995-2010. PubMed ID: 32185420
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression.
    Allier A; Moreau L; Charcosset A; Teyssèdre S; Lehermeier C
    G3 (Bethesda); 2019 May; 9(5):1469-1479. PubMed ID: 30819823
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparative map and trait viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments.
    Sawkins MC; Farmer AD; Hoisington D; Sullivan J; Tolopko A; Jiang Z; Ribaut JM
    Plant Mol Biol; 2004 Oct; 56(3):465-80. PubMed ID: 15604756
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multiple quantitative trait loci Haseman-Elston regression using all markers on the entire genome.
    Zhang YM; Lü HY; Yao LL
    Theor Appl Genet; 2008 Sep; 117(5):683-90. PubMed ID: 18563308
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture.
    Wei L; Zhang X; Zhang Z; Liu H; Lin Z
    Heredity (Edinb); 2018 Jul; 121(1):75-86. PubMed ID: 29472693
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Simple Test Identifies Selection on Complex Traits.
    Beissinger T; Kruppa J; Cavero D; Ha NT; Erbe M; Simianer H
    Genetics; 2018 May; 209(1):321-333. PubMed ID: 29545467
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mapping environment-specific quantitative trait loci.
    Chen X; Zhao F; Xu S
    Genetics; 2010 Nov; 186(3):1053-66. PubMed ID: 20805558
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mapping QTL for agronomic traits in breeding populations.
    Würschum T
    Theor Appl Genet; 2012 Jul; 125(2):201-10. PubMed ID: 22614179
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.
    Gianola D; Wu XL; Manfredi E; Simianer H
    Genetica; 2010 Oct; 138(9-10):959-77. PubMed ID: 20737196
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An empirical method for establishing positional confidence intervals tailored for composite interval mapping of QTL.
    Crossett A; Lauter N; Love TM
    PLoS One; 2010 Feb; 5(2):e9039. PubMed ID: 20161743
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Selection strategies for the development of maize introgression populations.
    Herzog E; Falke KC; Presterl T; Scheuermann D; Ouzunova M; Frisch M
    PLoS One; 2014; 9(3):e92429. PubMed ID: 24647313
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional mapping of dynamic traits with robust t-distribution.
    Wu C; Li G; Zhu J; Cui Y
    PLoS One; 2011; 6(9):e24902. PubMed ID: 21966378
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Estimates of genetic variance in an F2 maize population.
    Wolf DP; Peternelli LA; Hallauer AR
    J Hered; 2000; 91(5):384-91. PubMed ID: 10994705
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Detecting dominant QTL with variance component analysis in simulated pedigrees.
    Rowe SJ; Pong-Wong R; Haley CS; Knott SA; De Koning DJ
    Genet Res (Camb); 2008 Aug; 90(4):363-74. PubMed ID: 18840310
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Detecting the undetected: estimating the total number of loci underlying a quantitative trait.
    Otto SP; Jones CD
    Genetics; 2000 Dec; 156(4):2093-107. PubMed ID: 11102398
    [TBL] [Abstract][Full Text] [Related]  

  • 80. QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations-case studies in forage breeding.
    Hoyos-Villegas V; Arief VN; Yang WH; Sun M; DeLacy IH; Barrett BA; Jahufer Z; Basford KE
    Heredity (Edinb); 2019 May; 122(5):684-695. PubMed ID: 30368530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.