These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26852676)

  • 21. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices.
    Shoaib A; Darraj A; Khan ME; Azmi L; Alalwan A; Alamri O; Tabish M; Khan AU
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High performance nonenzymatic electrochemical sensors
    Alam MM; Howlader MMR
    Analyst; 2024 Jan; 149(3):712-728. PubMed ID: 37755066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection.
    Martín A; Kim J; Kurniawan JF; Sempionatto JR; Moreto JR; Tang G; Campbell AS; Shin A; Lee MY; Liu X; Wang J
    ACS Sens; 2017 Dec; 2(12):1860-1868. PubMed ID: 29152973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device.
    Lee H; Hong YJ; Baik S; Hyeon T; Kim DH
    Adv Healthc Mater; 2018 Apr; 7(8):e1701150. PubMed ID: 29334198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies.
    Li G; Wen D
    J Mater Chem B; 2020 Apr; 8(16):3423-3436. PubMed ID: 32022089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management?
    Todaro B; Begarani F; Sartori F; Luin S
    Front Chem; 2022; 10():994272. PubMed ID: 36226124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring.
    Das R; Nag S; Banerjee P
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accessing analytes in biofluids for peripheral biochemical monitoring.
    Heikenfeld J; Jajack A; Feldman B; Granger SW; Gaitonde S; Begtrup G; Katchman BA
    Nat Biotechnol; 2019 Apr; 37(4):407-419. PubMed ID: 30804536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-invasive blood glucose monitoring technology in diabetes management: review.
    Moses JC; Adibi S; Wickramasinghe N; Nguyen L; Angelova M; Islam SMS
    Mhealth; 2024; 10():9. PubMed ID: 38323150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management.
    Laha S; Rajput A; Laha SS; Jadhav R
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wearable non-invasive epidermal glucose sensors: A review.
    Kim J; Campbell AS; Wang J
    Talanta; 2018 Jan; 177():163-170. PubMed ID: 29108571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat.
    Katseli V; Economou A; Kokkinos C
    Anal Chem; 2021 Feb; 93(7):3331-3336. PubMed ID: 33560824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wearable Healthcare Monitoring Based on a Microfluidic Electrochemical Integrated Device for Sensing Glucose in Natural Sweat.
    Noura Z; Shah I; Aziz S; Ahmed A; Jung DW; Brahim L; ElMostafa R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Sensor Technologies for Disease Detection via Volatolomics.
    Vishinkin R; Haick H
    Small; 2015 Dec; 11(46):6142-64. PubMed ID: 26448487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Device Based on a Sudomotor Nanomaterial for Sweat Detection.
    Gong L; Bonmarin M; Spano F; Shen Y; Shen L; Han G; Wei S; Zhang Q; Chen Z; Zhao F
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29866-29875. PubMed ID: 37318096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Research progress on minimally invasive and non-invasive blood glucose detection methods].
    Gao X; Xu Z; Chen L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):365-372. PubMed ID: 37139770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors.
    Broza YY; Zhou X; Yuan M; Qu D; Zheng Y; Vishinkin R; Khatib M; Wu W; Haick H
    Chem Rev; 2019 Nov; 119(22):11761-11817. PubMed ID: 31729868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review.
    Matsuda E; Brennan P
    JBI Libr Syst Rev; 2012; 10(42 Suppl):1-10. PubMed ID: 27820140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An overview of minimally invasive technologies.
    Ginsberg BH
    Clin Chem; 1992 Sep; 38(9):1596-600. PubMed ID: 1525986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ammonia detection: A pathway towards potential point-of-care diagnostics.
    Rath RJ; Herrington JO; Adeel M; Güder F; Dehghani F; Farajikhah S
    Biosens Bioelectron; 2024 May; 251():116100. PubMed ID: 38364327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.