These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26852722)

  • 1. Light adaptation does not prevent early retinal abnormalities in diabetic rats.
    Kur J; Burian MA; Newman EA
    Sci Rep; 2016 Feb; 6():21075. PubMed ID: 26852722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early retinal damage in experimental diabetes: electroretinographical and morphological observations.
    Li Q; Zemel E; Miller B; Perlman I
    Exp Eye Res; 2002 May; 74(5):615-25. PubMed ID: 12076083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress, and neuronal functional loss.
    Ly A; Yee P; Vessey KA; Phipps JA; Jobling AI; Fletcher EL
    Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9316-26. PubMed ID: 22110070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythropoietin protects retinal neurons and glial cells in early-stage streptozotocin-induced diabetic rats.
    Zhu B; Wang W; Gu Q; Xu X
    Exp Eye Res; 2008 Feb; 86(2):375-82. PubMed ID: 18191124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy.
    Xu H; Zhang L; Gu L; Lu L; Gao G; Li W; Xu G; Wang J; Gao F; Xu JY; Yao J; Wang F; Zhang J; Xu GT
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1519-30. PubMed ID: 24508793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spare the rods and spoil the retina: revisited.
    Sivaprasad S; Arden G
    Eye (Lond); 2016 Feb; 30(2):189-92. PubMed ID: 26656085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats.
    Zhang Y; Zhang J; Wang Q; Lei X; Chu Q; Xu GT; Ye W
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):278-85. PubMed ID: 20688733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia and Dark Adaptation in Diabetic Retinopathy: Interactions, Consequences, and Therapy.
    Ramsey DJ; Arden GB
    Curr Diab Rep; 2015 Dec; 15(12):118. PubMed ID: 26493191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrophysiological study of retinal function in the diabetic female rat.
    Ramsey DJ; Ripps H; Qian H
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):5116-24. PubMed ID: 17065533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group.
    Barber AJ; Antonetti DA; Gardner TW
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3561-8. PubMed ID: 11006253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation.
    Phipps JA; Yee P; Fletcher EL; Vingrys AJ
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3187-94. PubMed ID: 16799066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro.
    Tang J; Du Y; Lee CA; Talahalli R; Eells JT; Kern TS
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3681-90. PubMed ID: 23557732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathologic alterations of the outer retina in streptozotocin-induced diabetes.
    Énzsöly A; Szabó A; Kántor O; Dávid C; Szalay P; Szabó K; Szél Á; Németh J; Lukáts Á
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3686-99. PubMed ID: 24845643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes.
    Hernández C; García-Ramírez M; Corraliza L; Fernández-Carneado J; Farrera-Sinfreu J; Ponsati B; González-Rodríguez A; Valverde AM; Simó R
    Diabetes; 2013 Jul; 62(7):2569-78. PubMed ID: 23474487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes: a potential enhancer of retinal injury in rat retinas.
    Oshitari T; Roy S
    Neurosci Lett; 2005 Dec; 390(1):25-30. PubMed ID: 16154273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat.
    Sugawara T; Sieving PA; Iuvone PM; Bush RA
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2458-65. PubMed ID: 9804154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Microglial Changes Associated with Diabetic Retinopathy in Rats with Streptozotocin-Induced Diabetes.
    Park YG; Lee JY; Kim C; Park YH
    J Diabetes Res; 2021; 2021():4920937. PubMed ID: 34926698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light deprivation reduces the severity of experimental diabetic retinopathy.
    Thebeau C; Zhang S; Kolesnikov AV; Kefalov VJ; Semenkovich CF; Rajagopal R
    Neurobiol Dis; 2020 Apr; 137():104754. PubMed ID: 31978605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine Deficiency Mediates Early Rod-Driven Inner Retinal Dysfunction in Diabetic Mice.
    Kim MK; Aung MH; Mees L; Olson DE; Pozdeyev N; Iuvone PM; Thule PM; Pardue MT
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):572-581. PubMed ID: 29372256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased intraretinal PO2 in short-term diabetic rats.
    Lau JC; Linsenmeier RA
    Diabetes; 2014 Dec; 63(12):4338-42. PubMed ID: 25028524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.