BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26852754)

  • 1. Sustainability assessment and prioritisation of e-waste management options in Brazil.
    de Souza RG; Clímaco JC; Sant'Anna AP; Rocha TB; do Valle RA; Quelhas OL
    Waste Manag; 2016 Nov; 57():46-56. PubMed ID: 26852754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System dynamics applied to closed loop supply chains of desktops and laptops in Brazil: A perspective for social inclusion of waste pickers.
    Ghisolfi V; Diniz Chaves GL; Ribeiro Siman R; Xavier LH
    Waste Manag; 2017 Feb; 60():14-31. PubMed ID: 28034614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E-waste management and sustainability: a case study in Brazil.
    Azevedo LP; da Silva Araújo FG; Lagarinhos CAF; Tenório JAS; Espinosa DCR
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25221-25232. PubMed ID: 28929286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool.
    Kim M; Jang YC; Lee S
    J Environ Manage; 2013 Oct; 128():941-8. PubMed ID: 23892135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries.
    Ibanescu D; Cailean Gavrilescu D; Teodosiu C; Fiore S
    Waste Manag; 2018 Mar; 73():39-53. PubMed ID: 29274687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing a sustainable dynamic collection service for WEEE: an economic and environmental analysis through simulation.
    Elia V; Gnoni MG; Tornese F
    Waste Manag Res; 2019 Apr; 37(4):402-411. PubMed ID: 30774041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collection and recycling of electronic scrap: a worldwide overview and comparison with the Brazilian situation.
    de Oliveira CR; Bernardes AM; Gerbase AE
    Waste Manag; 2012 Aug; 32(8):1592-610. PubMed ID: 22552043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.
    Friege H
    Waste Manag Res; 2012 Sep; 30(9 Suppl):3-16. PubMed ID: 22993131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.
    Wäger PA; Hischier R
    Sci Total Environ; 2015 Oct; 529():158-67. PubMed ID: 26022405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste of electrical and electronic equipment: Trends and awareness among youths in Lithuania.
    Dagiliūtė R; Zabulionis D; Sujetovienė G; Žaltauskaitė J
    Waste Manag Res; 2019 Jan; 37(1):95-101. PubMed ID: 30370832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.
    Terazono A; Oguchi M; Iino S; Mogi S
    Waste Manag; 2015 May; 39():246-57. PubMed ID: 25716742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic waste management cost: a scenario-based analysis for Greece.
    Achillas Ch; Vlachokostas Ch; Moussiopoulos N; Perkoulidis G; Banias G; Mastropavlos M
    Waste Manag Res; 2011 Sep; 29(9):963-72. PubMed ID: 21242175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supporting mobile WEEE collection on demand: A method for multi-criteria vehicle routing, loading and cost optimisation.
    Nowakowski P; Król A; Mrówczyńska B
    Waste Manag; 2017 Nov; 69():377-392. PubMed ID: 28784296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse logistics systems in Brazil: Comparative study and interest of multistakeholders.
    Rebehy PCPW; Andrade Dos Santos Lima S; Novi JC; Salgado AP
    J Environ Manage; 2019 Nov; 250():109223. PubMed ID: 31545173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.
    Araujo DRR; de Oliveira JD; Selva VF; Silva MM; Santos SM
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19703-19713. PubMed ID: 28685328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust reverse logistics network design for the waste of electrical and electronic equipment (WEEE) under recovery uncertainty.
    Qiang S; Zhou XZ
    J Environ Biol; 2016 Sep; 37(5 Spec No):1153-1165. PubMed ID: 29989748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste Electrical and Electronic Fund Policy: Current Status and Evaluation of Implementation in China.
    Yang XS; Zheng XX; Zhang TY; Du Y; Long F
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution.
    Pérez-Belis V; Bovea MD; Ibáñez-Forés V
    Waste Manag Res; 2015 Jan; 33(1):3-29. PubMed ID: 25406121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Networks of recyclable material waste-picker's cooperatives: an alternative for the solid waste management in the city of Rio de Janeiro.
    Tirado-Soto MM; Zamberlan FL
    Waste Manag; 2013 Apr; 33(4):1004-12. PubMed ID: 23347581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.