These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26852857)
1. Rational Design and Characterization of a Nanosuspension for Intraoral Administration Considering Physiological Conditions. Baumgartner R; Teubl BJ; Tetyczka C; Roblegg E J Pharm Sci; 2016 Jan; 105(1):257-67. PubMed ID: 26852857 [TBL] [Abstract][Full Text] [Related]
2. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Sawant KK; Patel MH; Patel K Drug Dev Ind Pharm; 2016; 42(5):758-68. PubMed ID: 26548349 [TBL] [Abstract][Full Text] [Related]
3. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - Development of particle design method. Niwa T; Miura S; Danjo K Int J Pharm; 2011 Feb; 405(1-2):218-27. PubMed ID: 21167922 [TBL] [Abstract][Full Text] [Related]
4. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations. Baumgartner R; Eitzlmayr A; Matsko N; Tetyczka C; Khinast J; Roblegg E Int J Pharm; 2014 Dec; 477(1-2):1-11. PubMed ID: 25304093 [TBL] [Abstract][Full Text] [Related]
5. Scaling up nano-milling of poorly water soluble compounds using a rotation/revolution pulverizer. Yuminoki K; Tachibana S; Nishimura Y; Mori H; Takatsuka T; Hashimoto N Pharmazie; 2016 Feb; 71(2):56-64. PubMed ID: 27004368 [TBL] [Abstract][Full Text] [Related]
6. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Atef E; Belmonte AA Eur J Pharm Sci; 2008 Nov; 35(4):257-63. PubMed ID: 18706499 [TBL] [Abstract][Full Text] [Related]
7. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Freag MS; Elnaggar YS; Abdallah OY Int J Pharm; 2013 Sep; 454(1):462-71. PubMed ID: 23830765 [TBL] [Abstract][Full Text] [Related]
8. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518 [TBL] [Abstract][Full Text] [Related]
9. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Van Eerdenbrugh B; Froyen L; Van Humbeeck J; Martens JA; Augustijns P; Van den Mooter G Eur J Pharm Sci; 2008 Sep; 35(1-2):127-35. PubMed ID: 18644441 [TBL] [Abstract][Full Text] [Related]
10. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Alshweiat A; Csóka I; Tömösi F; Janáky T; Kovács A; Gáspár R; Sztojkov-Ivanov A; Ducza E; Márki Á; Szabó-Révész P; Ambrus R Int J Pharm; 2020 Apr; 579():119166. PubMed ID: 32084574 [TBL] [Abstract][Full Text] [Related]
11. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Pardeike J; Strohmeier DM; Schrödl N; Voura C; Gruber M; Khinast JG; Zimmer A Int J Pharm; 2011 Nov; 420(1):93-100. PubMed ID: 21889582 [TBL] [Abstract][Full Text] [Related]
12. Practical method for preparing nanosuspension formulations for toxicology studies in the discovery stage: formulation optimization and in vitro/in vivo evaluation of nanosized poorly water-soluble compounds. Komasaka T; Fujimura H; Tagawa T; Sugiyama A; Kitano Y Chem Pharm Bull (Tokyo); 2014; 62(11):1073-82. PubMed ID: 25366311 [TBL] [Abstract][Full Text] [Related]
13. Formulation and evaluation of mucoadhesive buccal films impregnated with carvedilol nanosuspension: a potential approach for delivery of drugs having high first-pass metabolism. Rana P; Murthy RS Drug Deliv; 2013; 20(5):224-35. PubMed ID: 23651066 [TBL] [Abstract][Full Text] [Related]
14. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Dai WG; Dong LC; Song YQ Int J Pharm; 2007 Sep; 342(1-2):201-7. PubMed ID: 17560055 [TBL] [Abstract][Full Text] [Related]
15. Formulation, evaluation and optimization of the felodipine nanosuspension to be used for direct compression to tablet for in vitro dissolution enhancement. Mori D; Makwana J; Parmar R; Patel K; Chavda J Pak J Pharm Sci; 2016 Nov; 29(6):1927-1936. PubMed ID: 28375107 [TBL] [Abstract][Full Text] [Related]
16. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Patel GV; Patel VB; Pathak A; Rajput SJ Drug Dev Ind Pharm; 2014 Jan; 40(1):80-91. PubMed ID: 23323843 [TBL] [Abstract][Full Text] [Related]
17. Nanosuspension development of scutellarein as an active and rapid orally absorbed precursor of its BCS class IV glycoside scutellarin. Yang X; Miao X; Cao F; Li S; Ai N; Chang Q; Lee SMY; Zheng Y J Pharm Sci; 2014 Nov; 103(11):3576-3584. PubMed ID: 25187229 [TBL] [Abstract][Full Text] [Related]
18. Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2010 Aug; 396(1-2):210-8. PubMed ID: 20600732 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. Zuo W; Qu W; Li N; Yu R; Hou Y; Liu Y; Gou G; Yang J Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1513-1522. PubMed ID: 28906144 [TBL] [Abstract][Full Text] [Related]
20. Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. Singhal M; Baumgartner A; Turunen E; van Veen B; Hirvonen J; Peltonen L Int J Pharm; 2020 Sep; 587():119636. PubMed ID: 32659405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]