These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26852896)

  • 1. Superelastic, Macroporous Polystyrene-Mediated Graphene Aerogels for Active Pressure Sensing.
    Zhang P; Lv L; Cheng Z; Liang Y; Zhou Q; Zhao Y; Qu L
    Chem Asian J; 2016 Apr; 11(7):1071-5. PubMed ID: 26852896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene aerogels that withstand extreme compressive stress and strain.
    Li C; Ding M; Zhang B; Qiao X; Liu CY
    Nanoscale; 2018 Oct; 10(38):18291-18299. PubMed ID: 30246840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.
    Xu X; Li H; Zhang Q; Hu H; Zhao Z; Li J; Li J; Qiao Y; Gogotsi Y
    ACS Nano; 2015 Apr; 9(4):3969-77. PubMed ID: 25792130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints.
    Hong JY; Yun S; Wie JJ; Zhang X; Dresselhaus MS; Kong J; Park HS
    Nanoscale; 2016 Jul; 8(26):12900-9. PubMed ID: 27244686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM
    Yan S; Zhang G; Li F; Zhang L; Wang S; Zhao H; Ge Q; Li H
    Nanoscale; 2019 May; 11(21):10372-10380. PubMed ID: 31107474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors.
    Zou Y; Chen Z; Guo X; Peng Z; Yu C; Zhong W
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17858-17868. PubMed ID: 35390255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superelastic carbon aerogels with anisotropic and hierarchically-enhanced cellular structure for wearable piezoresistive sensors.
    Ye W; Meng L; Xi J; Bian H; Xu Z; Xiao H; Zhang L; Wu W
    J Colloid Interface Sci; 2024 Jul; 666():529-539. PubMed ID: 38613975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors.
    He X; Liu Q; Zhong W; Chen J; Sun D; Jiang H; Liu K; Wang W; Wang Y; Lu Z; Li M; Liu X; Wang X; Sun G; Wang D
    ACS Appl Mater Interfaces; 2019 May; 11(21):19350-19362. PubMed ID: 31056902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic Free-Standing Aerogels Based on Graphene/Silk for Pressure Sensing and Efficient Adsorption.
    Ma X; Kong Z; Gao Y; Bai Y; Wang W; Tan H; Cai X; Cai J
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30630-30642. PubMed ID: 37322613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly compressible 3D periodic graphene aerogel microlattices.
    Zhu C; Han TY; Duoss EB; Golobic AM; Kuntz JD; Spadaccini CM; Worsley MA
    Nat Commun; 2015 Apr; 6():6962. PubMed ID: 25902277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Graphene Aerogels.
    Zhang Q; Zhang F; Medarametla SP; Li H; Zhou C; Lin D
    Small; 2016 Apr; 12(13):1702-8. PubMed ID: 26861680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Customizable Resilient Multifunctional Graphene Aerogels via Blend-spinning assisted Freeze Casting.
    Zhao Y; Qi H; Dong X; Yang Y; Zhai W
    ACS Nano; 2023 Aug; 17(16):15615-15628. PubMed ID: 37540788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications.
    Nardecchia S; Carriazo D; Ferrer ML; Gutiérrez MC; del Monte F
    Chem Soc Rev; 2013 Jan; 42(2):794-830. PubMed ID: 23160635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Naturally Dried MXene-Based Composite Aerogels with Flash Joule Annealing for Large-Scale Production of Highly Sensitive Customized Sensors.
    Zhu W; Zhuang Y; Weng J; Huang Q; Lai G; Li L; Chen M; Xia K; Lu Z; Wu M; Zou Z
    Adv Mater; 2024 Aug; 36(33):e2407138. PubMed ID: 38887139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.
    Chen W; Yan L
    Nanoscale; 2011 Aug; 3(8):3132-7. PubMed ID: 21698339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays.
    Zu G; Kanamori K; Nakanishi K; Lu X; Yu K; Huang J; Sugimura H
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43533-43542. PubMed ID: 31674184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience.
    Yang M; Zhao N; Cui Y; Gao W; Zhao Q; Gao C; Bai H; Xie T
    ACS Nano; 2017 Jul; 11(7):6817-6824. PubMed ID: 28636356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
    Li C; Qiu L; Zhang B; Li D; Liu CY
    Adv Mater; 2016 Feb; 28(7):1510-6. PubMed ID: 26643876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and "sticky" superhydrophobicity.
    Hu H; Zhao Z; Wan W; Gogotsi Y; Qiu J
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3242-9. PubMed ID: 24524309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.