These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26852896)
21. Interfacial Engineering to Tailor the Properties of Multifunctional Ultralight Weight hBN-Polymer Composite Aerogels. Ozden S; Dutta NS; Randazzo K; Tsafack T; Arnold CB; Priestley RD ACS Appl Mater Interfaces; 2021 Mar; 13(11):13620-13628. PubMed ID: 33689272 [TBL] [Abstract][Full Text] [Related]
22. Soft-Templated Synthesis of Lightweight, Elastic, and Conductive Nanotube Aerogels. Liang W; Rhodes S; Zheng J; Wang X; Fang J ACS Appl Mater Interfaces; 2018 Oct; 10(43):37426-37433. PubMed ID: 30289683 [TBL] [Abstract][Full Text] [Related]
23. Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. Zeng Z; Wu N; Yang W; Xu H; Liao Y; Li C; Luković M; Yang Y; Zhao S; Su Z; Lu X Small; 2022 Jun; 18(24):e2202047. PubMed ID: 35570715 [TBL] [Abstract][Full Text] [Related]
24. Highly Flexible and Superelastic Graphene Nanofibrous Aerogels for Intelligent Sign Language. Pang K; Ma J; Song X; Liu X; Zhang C; Gao Y; Li K; Liu Y; Peng Y; Xu Z; Gao C Small; 2024 Aug; 20(34):e2400415. PubMed ID: 38698600 [TBL] [Abstract][Full Text] [Related]
25. Drastically Enhancing Moduli of Graphene-Coated Carbon Nanotube Aerogels via Densification while Retaining Temperature-Invariant Superelasticity and Ultrahigh Efficiency. Tsui MN; Kim KH; Islam MF ACS Appl Mater Interfaces; 2017 Nov; 9(43):37954-37961. PubMed ID: 28991429 [TBL] [Abstract][Full Text] [Related]
26. Superelastic Hard Carbon Nanofiber Aerogels. Yu ZL; Qin B; Ma ZY; Huang J; Li SC; Zhao HY; Li H; Zhu YB; Wu HA; Yu SH Adv Mater; 2019 Jun; 31(23):e1900651. PubMed ID: 30985032 [TBL] [Abstract][Full Text] [Related]
27. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. Qin Y; Peng Q; Ding Y; Lin Z; Wang C; Li Y; Xu F; Li J; Yuan Y; He X; Li Y ACS Nano; 2015 Sep; 9(9):8933-41. PubMed ID: 26301319 [TBL] [Abstract][Full Text] [Related]
28. Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range. Tsui MN; Islam MF Nanoscale; 2017 Jan; 9(3):1128-1135. PubMed ID: 28009903 [TBL] [Abstract][Full Text] [Related]
29. Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending. Kim YH; Kim SJ; Kim YJ; Shim YS; Kim SY; Hong BH; Jang HW ACS Nano; 2015 Oct; 9(10):10453-60. PubMed ID: 26321290 [TBL] [Abstract][Full Text] [Related]
30. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. Wang Z; Shen X; Akbari Garakani M; Lin X; Wu Y; Liu X; Sun X; Kim JK ACS Appl Mater Interfaces; 2015 Mar; 7(9):5538-49. PubMed ID: 25691257 [TBL] [Abstract][Full Text] [Related]
31. Naturally Dried Graphene-Based Nanocomposite Aerogels with Exceptional Elasticity and High Electrical Conductivity. Zhang Y; Zhang L; Zhang G; Li H ACS Appl Mater Interfaces; 2018 Jun; 10(25):21565-21572. PubMed ID: 29864278 [TBL] [Abstract][Full Text] [Related]
32. Robust and Stable Cu Nanowire@Graphene Core-Shell Aerogels for Ultraeffective Electromagnetic Interference Shielding. Wu S; Zou M; Li Z; Chen D; Zhang H; Yuan Y; Pei Y; Cao A Small; 2018 Jun; 14(23):e1800634. PubMed ID: 29749012 [TBL] [Abstract][Full Text] [Related]
33. Hierarchical Nafion enhanced carbon aerogels for sensing applications. Weng B; Ding A; Liu Y; Diao J; Razal J; Lau KT; Shepherd R; Li C; Chen J Nanoscale; 2016 Feb; 8(6):3416-24. PubMed ID: 26791962 [TBL] [Abstract][Full Text] [Related]
34. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279 [TBL] [Abstract][Full Text] [Related]
35. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Wang R; Xu C; Du M; Sun J; Gao L; Zhang P; Yao H; Lin C Small; 2014 Jun; 10(11):2260-9. PubMed ID: 24678007 [TBL] [Abstract][Full Text] [Related]
36. Aerogels Based on Reduced Graphene Oxide/Cellulose Composites: Preparation and Vapour Sensing Abilities. Chen Y; Pötschke P; Pionteck J; Voit B; Qi H Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32878341 [TBL] [Abstract][Full Text] [Related]
37. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels. Ha H; Shanmuganathan K; Ellison CJ ACS Appl Mater Interfaces; 2015 Mar; 7(11):6220-9. PubMed ID: 25714662 [TBL] [Abstract][Full Text] [Related]
38. A versatile strategy toward binary three-dimensional architectures based on engineering graphene aerogels with porous carbon fabrics for supercapacitors. Song WL; Song K; Fan LZ ACS Appl Mater Interfaces; 2015 Feb; 7(7):4257-64. PubMed ID: 25654650 [TBL] [Abstract][Full Text] [Related]
39. Glucose/Graphene-Based Aerogels for Gas Adsorption and Electric Double Layer Capacitors. Liu KK; Jin B; Meng LY Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30960024 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and characterization of highly crystalline graphene aerogels. Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]