These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform. Peng X; Zhang Y; Chu H; Li G J Comput Chem; 2016 Mar; 37(6):614-22. PubMed ID: 26493154 [TBL] [Abstract][Full Text] [Related]
6. Efficient Sampling of High-Dimensional Free-Energy Landscapes with Parallel Bias Metadynamics. Pfaendtner J; Bonomi M J Chem Theory Comput; 2015 Nov; 11(11):5062-7. PubMed ID: 26574304 [TBL] [Abstract][Full Text] [Related]
7. Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes. Sun R; Dama JF; Tan JS; Rose JP; Voth GA J Chem Theory Comput; 2016 Oct; 12(10):5157-5169. PubMed ID: 27598403 [TBL] [Abstract][Full Text] [Related]
8. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study. Vymetal J; Vondrásek J J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773 [TBL] [Abstract][Full Text] [Related]
9. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789 [TBL] [Abstract][Full Text] [Related]
10. GPU-Enhanced DFTB Metadynamics for Efficiently Predicting Free Energies of Biochemical Systems. Kumar A; Arantes PR; Saha A; Palermo G; Wong BM Molecules; 2023 Jan; 28(3):. PubMed ID: 36770943 [TBL] [Abstract][Full Text] [Related]
11. Transition-Tempered Metadynamics: Robust, Convergent Metadynamics via On-the-Fly Transition Barrier Estimation. Dama JF; Rotskoff G; Parrinello M; Voth GA J Chem Theory Comput; 2014 Sep; 10(9):3626-33. PubMed ID: 26588507 [TBL] [Abstract][Full Text] [Related]
12. Metadynamics in essential coordinates: free energy simulation of conformational changes. Spiwok V; Lipovová P; Králová B J Phys Chem B; 2007 Mar; 111(12):3073-6. PubMed ID: 17388445 [TBL] [Abstract][Full Text] [Related]
14. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling. Yang YI; Zhang J; Che X; Yang L; Gao YQ J Chem Phys; 2016 Mar; 144(9):094105. PubMed ID: 26957155 [TBL] [Abstract][Full Text] [Related]
15. Essential energy space random walk via energy space metadynamics method to accelerate molecular dynamics simulations. Li H; Min D; Liu Y; Yang W J Chem Phys; 2007 Sep; 127(9):094101. PubMed ID: 17824726 [TBL] [Abstract][Full Text] [Related]
16. Replica state exchange metadynamics for improving the convergence of free energy estimates. Galvelis R; Sugita Y J Comput Chem; 2015 Jul; 36(19):1446-55. PubMed ID: 25990969 [TBL] [Abstract][Full Text] [Related]
17. Calculating the free energy of transfer of small solutes into a model lipid membrane: Comparison between metadynamics and umbrella sampling. Bochicchio D; Panizon E; Ferrando R; Monticelli L; Rossi G J Chem Phys; 2015 Oct; 143(14):144108. PubMed ID: 26472364 [TBL] [Abstract][Full Text] [Related]
18. Continuous metadynamics in essential coordinates as a tool for free energy modelling of conformational changes. Spiwok V; Králová B; Tvaroska I J Mol Model; 2008 Nov; 14(11):995-1002. PubMed ID: 18633653 [TBL] [Abstract][Full Text] [Related]
19. Free Energy Reconstruction from Metadynamics or Adiabatic Free Energy Dynamics Simulations. Cuendet MA; Tuckerman ME J Chem Theory Comput; 2014 Aug; 10(8):2975-86. PubMed ID: 26588271 [TBL] [Abstract][Full Text] [Related]