These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26853049)

  • 1. Overlapping genes: A significant genomic correlate of prokaryotic growth rates.
    Saha D; Podder S; Panda A; Ghosh TC
    Gene; 2016 May; 582(2):143-7. PubMed ID: 26853049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overlapping genes: a new strategy of thermophilic stress tolerance in prokaryotes.
    Saha D; Panda A; Podder S; Ghosh TC
    Extremophiles; 2015 Mar; 19(2):345-53. PubMed ID: 25503326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mystery of two straight lines in bacterial genome statistics.
    Gorban AN; Zinovyev AY
    Bull Math Biol; 2007 Oct; 69(7):2429-42. PubMed ID: 17577600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundance of 4Fe-4S motifs in the genomes of methanogens and other prokaryotes.
    Major TA; Burd H; Whitman WB
    FEMS Microbiol Lett; 2004 Oct; 239(1):117-23. PubMed ID: 15451109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Codon usage between genomes is constrained by genome-wide mutational processes.
    Chen SL; Lee W; Hottes AK; Shapiro L; McAdams HH
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3480-5. PubMed ID: 14990797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles.
    Botzman M; Margalit H
    Genome Biol; 2011 Oct; 12(10):R109. PubMed ID: 22032172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified model explaining the offsets of overlapping and near-overlapping prokaryotic genes.
    Kingsford C; Delcher AL; Salzberg SL
    Mol Biol Evol; 2007 Sep; 24(9):2091-8. PubMed ID: 17642473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Codon bias signatures, organization of microorganisms in codon space, and lifestyle.
    Carbone A; Képès F; Zinovyev A
    Mol Biol Evol; 2005 Mar; 22(3):547-61. PubMed ID: 15537809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between codon usage and sequence-dependent curvature of genomes.
    Jáuregui R; O'Reilly F; Bolivar F; Merino E
    Microb Comp Genomics; 1998; 3(4):243-53. PubMed ID: 10027193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. En route to a genome-based classification of Archaea and Bacteria?
    Klenk HP; Göker M
    Syst Appl Microbiol; 2010 Jun; 33(4):175-82. PubMed ID: 20409658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and length distribution of unidirectional prokaryotic overlapping genes.
    Fonseca MM; Harris DJ; Posada D
    G3 (Bethesda); 2014 Jan; 4(1):19-27. PubMed ID: 24192837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of relative reading frame bias in unidirectional prokaryotic gene overlaps.
    Cock PJ; Whitworth DE
    Mol Biol Evol; 2010 Apr; 27(4):753-6. PubMed ID: 20008458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions.
    von Mandach C; Merkl R
    BMC Genomics; 2010 Nov; 11():617. PubMed ID: 21050470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea.
    Groussin M; Gouy M
    Mol Biol Evol; 2011 Sep; 28(9):2661-74. PubMed ID: 21498602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Growth Temperature and Intergenic Distances in Bacteria, Archaea, and Plastids of Rhodophytic Branch.
    Lyubetsky VA; Zverkov OA; Rubanov LI; Seliverstov AV
    Biomed Res Int; 2020; 2020():3465380. PubMed ID: 32025518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes.
    Arraiano CM; Bamford J; Brüssow H; Carpousis AJ; Pelicic V; Pflüger K; Polard P; Vogel J
    J Bacteriol; 2007 Sep; 189(17):6093-100. PubMed ID: 17601780
    [No Abstract]   [Full Text] [Related]  

  • 17. Impact of Homologous Recombination on the Evolution of Prokaryotic Core Genomes.
    González-Torres P; Rodríguez-Mateos F; Antón J; Gabaldón T
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible genomic islands as drivers of genome evolution.
    Rodriguez-Valera F; Martin-Cuadrado AB; López-Pérez M
    Curr Opin Microbiol; 2016 Jun; 31():154-160. PubMed ID: 27085300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capturing prokaryotic dark matter genomes.
    Gasc C; Ribière C; Parisot N; Beugnot R; Defois C; Petit-Biderre C; Boucher D; Peyretaillade E; Peyret P
    Res Microbiol; 2015 Dec; 166(10):814-30. PubMed ID: 26100932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecophysiological significance of scale-dependent patterns in prokaryotic genomes unveiled by a combination of statistic and genometric analyses.
    Garcia JA; Bartumeus F; Roche D; Giraldo J; Stanley HE; Casamayor EO
    Genomics; 2008 Jun; 91(6):538-43. PubMed ID: 18420375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.