BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26853050)

  • 21. [Cane for the blind with a device for detecting and recognizing pedestrian obstacles].
    Chereshanskiĭ VA; Budiianskaia LM; Ivanchenko IA; Karsh LA; Santoniĭ VI
    Med Tekh; 1998; (1):32-4. PubMed ID: 9560816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Implementation of a Walking Stick Aid for Visually Challenged People.
    Sahoo N; Lin HW; Chang YH
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30609745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic Echolocation Device for Assisting the Visually Impaired.
    Mick B; Reddmann N; Manwar R; Avanaki K
    Curr Med Imaging; 2020; 16(5):601-610. PubMed ID: 32484095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving Walking Path Generation Through Biped Constraint in Indoor Navigation System for Visually Impaired Individuals.
    Na Q; Zhou H; Yuan H; Gui M; Teng H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1221-1232. PubMed ID: 38466607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expounding the rehabilitation service for acquired visual impairment contingent on assistive technology acceptance.
    Kan CR; Wang CY
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):520-524. PubMed ID: 32363954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Guest Editorial: Haptic Assistive Technology for Individuals who are Visually Impaired.
    Pawluk D; Bourbakis N; Giudice N; Hayward V; Heller M
    IEEE Trans Haptics; 2015; 8(3):245-7. PubMed ID: 26649374
    [No Abstract]   [Full Text] [Related]  

  • 29. PERCEPT: indoor navigation for the blind and visually impaired.
    Ganz A; Gandhi SR; Schafer J; Singh T; Puleo E; Mullett G; Wilson C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():856-9. PubMed ID: 22254445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. InWalker: smart white cane for the blind.
    Husin MH; Lim YK
    Disabil Rehabil Assist Technol; 2020 Aug; 15(6):701-707. PubMed ID: 31729282
    [No Abstract]   [Full Text] [Related]  

  • 31. Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired.
    Pawluk DT; Adams RJ; Kitada R
    IEEE Trans Haptics; 2015; 8(3):258-78. PubMed ID: 26336151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of a simple obstacle detection device for the visually impaired.
    Lee CL; Chen CY; Sung PC; Lu SY
    Appl Ergon; 2014 Jul; 45(4):817-24. PubMed ID: 24239566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals.
    Lupu RG; Mitruț O; Stan A; Ungureanu F; Kalimeri K; Moldoveanu A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An experimental study on target recognition using white canes.
    Nunokawa K; Ino S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6583-6. PubMed ID: 21096512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Cost Open Source Ultrasound-Sensing Based Navigational Support for the Visually Impaired.
    Petsiuk AL; Pearce JM
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An intelligent indoor guidance and navigation system for the visually impaired.
    Kahraman M; Turhan C
    Assist Technol; 2022 Jul; 34(4):478-486. PubMed ID: 33465017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intelligent Head-Mounted Obstacle Avoidance Wearable for the Blind and Visually Impaired.
    Xu P; Song A; Wang K
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Device for Human Ultrasonic Echolocation.
    Sohl-Dickstein J; Teng S; Gaub BM; Rodgers CC; Li C; DeWeese MR; Harper NS
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1526-1534. PubMed ID: 25608301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.