These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2685326)

  • 1. Defining the structural requirements for a helix in 23 S ribosomal RNA that confers erythromycin resistance.
    Douthwaite S; Powers T; Lee JY; Noller HF
    J Mol Biol; 1989 Oct; 209(4):655-65. PubMed ID: 2685326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop.
    Douthwaite S; Aagaard C
    J Mol Biol; 1993 Aug; 232(3):725-31. PubMed ID: 7689111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific structural probing of plasmid-coded ribosomal RNAs from Escherichia coli.
    Aagaard C; Rosendahl G; Dam M; Powers T; Douthwaite S
    Biochimie; 1991 Dec; 73(12):1439-44. PubMed ID: 1725257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A plasmid-coded and site-directed mutation in Escherichia coli 23S RNA that confers resistance to erythromycin: implications for the mechanism of action of erythromycin.
    Vester B; Garrett RA
    Biochimie; 1987 Aug; 69(8):891-900. PubMed ID: 2447958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interactions within 23S rRNA involving the peptidyltransferase center.
    Douthwaite S
    J Bacteriol; 1992 Feb; 174(4):1333-8. PubMed ID: 1531223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome.
    Harris EH; Burkhart BD; Gillham NW; Boynton JE
    Genetics; 1989 Oct; 123(2):281-92. PubMed ID: 2583478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA.
    Gregory ST; Dahlberg AE
    J Mol Biol; 1999 Jun; 289(4):827-34. PubMed ID: 10369764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a single base change in ribosomal RNA leading to erythromycin resistance.
    Vannuffel P; Di Giambattista M; Morgan EA; Cocito C
    J Biol Chem; 1992 Apr; 267(12):8377-82. PubMed ID: 1569089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional peptide encoded in the Escherichia coli 23S rRNA.
    Tenson T; DeBlasio A; Mankin A
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5641-6. PubMed ID: 8643630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli.
    Ettayebi M; Prasad SM; Morgan EA
    J Bacteriol; 1985 May; 162(2):551-7. PubMed ID: 3886627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for functional interaction between domains II and V of 23S ribosomal RNA from an erythromycin-resistant mutant.
    Douthwaite S; Prince JB; Noller HF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8330-4. PubMed ID: 3909142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance.
    Dam M; Douthwaite S; Tenson T; Mankin AS
    J Mol Biol; 1996 May; 259(1):1-6. PubMed ID: 8648637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(3):965-75. PubMed ID: 9918717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythromycin resistance due to a mutation in a ribosomal RNA operon of Escherichia coli.
    Sigmund CD; Morgan EA
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5602-6. PubMed ID: 6752954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing.
    Balzer M; Wagner R
    J Mol Biol; 1998 Feb; 276(3):547-57. PubMed ID: 9551096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin.
    Davydova N; Streltsov V; Wilce M; Liljas A; Garber M
    J Mol Biol; 2002 Sep; 322(3):635-44. PubMed ID: 12225755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous erythromycin resistance mutation in a 23S rRNA gene, rrlA, of the extreme thermophile Thermus thermophilus IB-21.
    Gregory ST; Cate JH; Dahlberg AE
    J Bacteriol; 2001 Jul; 183(14):4382-5. PubMed ID: 11418580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.