These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26853261)

  • 1. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.
    Jonsen I
    Sci Rep; 2016 Feb; 6():20625. PubMed ID: 26853261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.
    Silva MA; Jonsen I; Russell DJ; Prieto R; Thompson D; Baumgartner MF
    PLoS One; 2014; 9(3):e92277. PubMed ID: 24651252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.
    Lowther AD; Lydersen C; Fedak MA; Lovell P; Kovacs KM
    PLoS One; 2015; 10(4):e0124754. PubMed ID: 25905640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for identifying behavioural changes in animal movement data.
    Gurarie E; Andrews RD; Laidre KL
    Ecol Lett; 2009 May; 12(5):395-408. PubMed ID: 19379134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal movement constraints improve resource selection inference in the presence of telemetry error.
    Brost BM; Hooten MB; Hanks EM; Small RJ
    Ecology; 2015 Oct; 96(10):2590-7. PubMed ID: 26649380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using GPS data to evaluate the accuracy of state-space methods for correction of Argos satellite telemetry error.
    Patterson TA; McConnell BJ; Fedak MA; Bravington MV; Hindell MA
    Ecology; 2010 Jan; 91(1):273-85. PubMed ID: 20380216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting animal home-range structure and transitions using a multistate Ornstein-Uhlenbeck biased random walk.
    Breed GA; Golson EA; Tinker MT
    Ecology; 2017 Jan; 98(1):32-47. PubMed ID: 27893946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining animal movements and behavioural data to detect behavioural states.
    Nams VO
    Ecol Lett; 2014 Oct; 17(10):1228-37. PubMed ID: 25040789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements.
    Ketz AC; Johnson TL; Monello RJ; Mack JA; George JL; Kraft BR; Wild MA; Hooten MB; Hobbs NT
    Ecol Appl; 2018 Apr; 28(3):816-825. PubMed ID: 29405475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Argos Telemetry Accuracy in the High-Arctic and Implications for the Estimation of Home-Range Size.
    Christin S; St-Laurent MH; Berteaux D
    PLoS One; 2015; 10(11):e0141999. PubMed ID: 26545245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the Functionality of Behavioural Change-Point Analysis with k-Means Clustering: A Case Study with the Little Penguin (Eudyptula minor).
    Zhang J; O'Reilly KM; Perry GL; Taylor GA; Dennis TE
    PLoS One; 2015; 10(4):e0122811. PubMed ID: 25922935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalizing the first-difference correlated random walk for marine animal movement data.
    Albertsen CM
    Sci Rep; 2019 Mar; 9(1):4017. PubMed ID: 30850659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous-time state-space model for rapid quality control of argos locations from animal-borne tags.
    Jonsen ID; Patterson TA; Costa DP; Doherty PD; Godley BJ; Grecian WJ; Guinet C; Hoenner X; Kienle SS; Robinson PW; Votier SC; Whiting S; Witt MJ; Hindell MA; Harcourt RG; McMahon CR
    Mov Ecol; 2020; 8():31. PubMed ID: 32695402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles.
    Jonsen ID; Myers RA; James MC
    J Anim Ecol; 2006 Sep; 75(5):1046-57. PubMed ID: 16922840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accounting for location uncertainty in azimuthal telemetry data improves ecological inference.
    Gerber BD; Hooten MB; Peck CP; Rice MB; Gammonley JH; Apa AD; Davis AJ
    Mov Ecol; 2018; 6():14. PubMed ID: 30062012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?
    Schlägel UE; Lewis MA
    J Math Biol; 2016 Dec; 73(6-7):1691-1726. PubMed ID: 27098937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data.
    Bradshaw CJ; Sims DW; Hays GC
    Ecol Appl; 2007 Mar; 17(2):628-38. PubMed ID: 17489266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hierarchical machine learning framework for the analysis of large scale animal movement data.
    Torney CJ; Morales JM; Husmeier D
    Mov Ecol; 2021 Feb; 9(1):6. PubMed ID: 33602302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting the behavior into animal movement modeling: Improved activity budgets from use of ancillary tag information.
    Bestley S; Jonsen I; Harcourt RG; Hindell MA; Gales NJ
    Ecol Evol; 2016 Nov; 6(22):8243-8255. PubMed ID: 27878092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.