These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 26853266)
1. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells. Jung YS; Hwang K; Scholes FH; Watkins SE; Kim DY; Vak D Sci Rep; 2016 Feb; 6():20357. PubMed ID: 26853266 [TBL] [Abstract][Full Text] [Related]
2. Using an airbrush pen for layer-by-layer growth of continuous perovskite thin films for hybrid solar cells. Ramesh M; Boopathi KM; Huang TY; Huang YC; Tsao CS; Chu CW ACS Appl Mater Interfaces; 2015 Feb; 7(4):2359-66. PubMed ID: 25562387 [TBL] [Abstract][Full Text] [Related]
3. Multi-source/component spray coating for polymer solar cells. Chen LM; Hong Z; Kwan WL; Lu CH; Lai YF; Lei B; Liu CP; Yang Y ACS Nano; 2010 Aug; 4(8):4744-52. PubMed ID: 20690608 [TBL] [Abstract][Full Text] [Related]
4. High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer. Chen L; Wang P; Chen Y ACS Appl Mater Interfaces; 2013 Jul; 5(13):5986-93. PubMed ID: 23763345 [TBL] [Abstract][Full Text] [Related]
5. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent. Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. Kumar N; Dutta V J Colloid Interface Sci; 2014 Nov; 434():181-7. PubMed ID: 25203909 [TBL] [Abstract][Full Text] [Related]
7. Naphthalene-, anthracene-, and pyrene-substituted fullerene derivatives as electron acceptors in polymer-based solar cells. Kim HU; Kim JH; Kang H; Grimsdale AC; Kim BJ; Yoon SC; Hwang DH ACS Appl Mater Interfaces; 2014 Dec; 6(23):20776-85. PubMed ID: 25393114 [TBL] [Abstract][Full Text] [Related]
8. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer. Chang S; Han GD; Weis JG; Park H; Hentz O; Zhao Z; Swager TM; Gradečak S ACS Appl Mater Interfaces; 2016 Apr; 8(13):8511-9. PubMed ID: 26947400 [TBL] [Abstract][Full Text] [Related]
9. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells. Khlyabich PP; Rudenko AE; Burkhart B; Thompson BC ACS Appl Mater Interfaces; 2015 Feb; 7(4):2322-30. PubMed ID: 25590225 [TBL] [Abstract][Full Text] [Related]
10. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Tait JG; De Volder MF; Cheyns D; Heremans P; Rand BP Nanoscale; 2015 Apr; 7(16):7259-66. PubMed ID: 25811493 [TBL] [Abstract][Full Text] [Related]
11. Interface modification effect on the performance of Cs Yu X; Yan X; Xiao J; Ku Z; Zhong J; Li W; Huang F; Peng Y; Cheng YB J Chem Phys; 2020 Jul; 153(1):014706. PubMed ID: 32640820 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase. Radbeh R; Parbaile E; Bouclé J; Di Bin C; Moliton A; Coudert V; Rossignol F; Ratier B Nanotechnology; 2010 Jan; 21(3):035201. PubMed ID: 19966408 [TBL] [Abstract][Full Text] [Related]
13. Correlating Non-Geminate Recombination with Film Structure: A Comparison of Polythiophene: Fullerene Bilayer and Blend Films. Shoaee S; Mehraeen S; Labram JG; Brédas JL; Bradley DD; Coropceanu V; Anthopoulos TD; Durrant JR J Phys Chem Lett; 2014 Nov; 5(21):3669-76. PubMed ID: 26278735 [TBL] [Abstract][Full Text] [Related]
14. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. Cheng Y; Yang QD; Xiao J; Xue Q; Li HW; Guan Z; Yip HL; Tsang SW ACS Appl Mater Interfaces; 2015 Sep; 7(36):19986-93. PubMed ID: 26280249 [TBL] [Abstract][Full Text] [Related]
15. Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH Chou LH; Wang XF; Osaka I; Wu CG; Liu CL ACS Appl Mater Interfaces; 2018 Nov; 10(44):38042-38050. PubMed ID: 30360087 [TBL] [Abstract][Full Text] [Related]
16. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells. Li M; Ni W; Kan B; Wan X; Zhang L; Zhang Q; Long G; Zuo Y; Chen Y Phys Chem Chem Phys; 2013 Nov; 15(43):18973-8. PubMed ID: 24097209 [TBL] [Abstract][Full Text] [Related]
17. [6,6]-phenyl-C₆₁-butyric acid 2-((2-(dimethylamino)ethyl)(methyl)amino)-ethyl ester as an acceptor and cathode interfacial material in polymer solar cells. Lv M; Lei M; Zhu J; Hirai T; Chen X ACS Appl Mater Interfaces; 2014 Apr; 6(8):5844-51. PubMed ID: 24660905 [TBL] [Abstract][Full Text] [Related]
19. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Xiao M; Huang F; Huang W; Dkhissi Y; Zhu Y; Etheridge J; Gray-Weale A; Bach U; Cheng YB; Spiccia L Angew Chem Int Ed Engl; 2014 Sep; 53(37):9898-903. PubMed ID: 25047967 [TBL] [Abstract][Full Text] [Related]
20. Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Lee S; Yeo JS; Ji Y; Cho C; Kim DY; Na SI; Lee BH; Lee T Nanotechnology; 2012 Aug; 23(34):344013. PubMed ID: 22885537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]