BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1657 related articles for article (PubMed ID: 26853435)

  • 1. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications.
    Kim EJ; Kang DW; Leucke HF; Bond MR; Ghosh S; Love DC; Ahn JS; Kang DO; Hanover JA
    Carbohydr Res; 2013 Aug; 377():18-27. PubMed ID: 23770695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells.
    Gutmann M; Memmel E; Braun AC; Seibel J; Meinel L; Lühmann T
    Chembiochem; 2016 May; 17(9):866-75. PubMed ID: 26818821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins.
    Sibbersen C; Lykke L; Gregersen N; Jørgensen KA; Johannsen M
    Chem Commun (Camb); 2014 Oct; 50(81):12098-100. PubMed ID: 25168178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal-mediated bioorthogonal protein chemistry in living cells.
    Yang M; Li J; Chen PR
    Chem Soc Rev; 2014 Sep; 43(18):6511-26. PubMed ID: 24867400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions.
    Lallana E; Riguera R; Fernandez-Megia E
    Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-GlcNAc Site Mapping by Using a Combination of Chemoenzymatic Labeling, Copper-Free Click Chemistry, Reductive Cleavage, and Electron-Transfer Dissociation Mass Spectrometry.
    Ma J; Wang WH; Li Z; Shabanowitz J; Hunt DF; Hart GW
    Anal Chem; 2019 Feb; 91(4):2620-2625. PubMed ID: 30657688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for the Detection, Study, and Dynamic Profiling of O-GlcNAc Glycosylation.
    Thompson JW; Griffin ME; Hsieh-Wilson LC
    Methods Enzymol; 2018; 598():101-135. PubMed ID: 29306432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Na
    Wang J; Dou B; Zheng L; Cao W; Zeng X; Wen Y; Ma J; Li X
    Bioorg Med Chem Lett; 2021 Sep; 48():128244. PubMed ID: 34229054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Presolski S
    Methods Mol Biol; 2018; 1798():187-193. PubMed ID: 29868960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An azide-modified nucleoside for metabolic labeling of DNA.
    Neef AB; Luedtke NW
    Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate determination of azide click reactions onto alkyne polymer brush scaffolds: a comparison of conventional and catalyst-free cycloadditions for tunable surface modification.
    Orski SV; Sheppard GR; Arumugam S; Arnold RM; Popik VV; Locklin J
    Langmuir; 2012 Oct; 28(41):14693-702. PubMed ID: 23009188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent protein-oligonucleotide conjugates by copper-free click reaction.
    Khatwani SL; Kang JS; Mullen DG; Hast MA; Beese LS; Distefano MD; Taton TA
    Bioorg Med Chem; 2012 Jul; 20(14):4532-9. PubMed ID: 22682299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoselective modification of viral surfaces via bioorthogonal click chemistry.
    Rubino FA; Oum YH; Rajaram L; Chu Y; Carrico IS
    J Vis Exp; 2012 Aug; (66):e4246. PubMed ID: 22929552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry.
    Hahne H; Sobotzki N; Nyberg T; Helm D; Borodkin VS; van Aalten DM; Agnew B; Kuster B
    J Proteome Res; 2013 Feb; 12(2):927-36. PubMed ID: 23301498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Peptide-Based Click Chemistry for Proteomic Profiling of Nascent Proteins.
    Sun N; Wang Y; Wang J; Sun W; Yang J; Liu N
    Anal Chem; 2020 Jun; 92(12):8292-8297. PubMed ID: 32434323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of triazole-forming bioconjugation techniques for constructing comb-shaped peptide-polymer bioconjugates.
    Canalle LA; van der Knaap M; Overhand M; van Hest JC
    Macromol Rapid Commun; 2011 Jan; 32(2):203-8. PubMed ID: 21433141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposome functionalization with copper-free "click chemistry".
    Oude Blenke E; Klaasse G; Merten H; Plückthun A; Mastrobattista E; Martin NI
    J Control Release; 2015 Mar; 202():14-20. PubMed ID: 25626085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 83.