These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26853436)
1. Predictive approach for protein aggregation: Correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity. Galm L; Amrhein S; Hubbuch J Biotechnol Bioeng; 2017 Jun; 114(6):1170-1183. PubMed ID: 26853436 [TBL] [Abstract][Full Text] [Related]
2. Computational Design To Reduce Conformational Flexibility and Aggregation Rates of an Antibody Fab Fragment. Zhang C; Samad M; Yu H; Chakroun N; Hilton D; Dalby PA Mol Pharm; 2018 Aug; 15(8):3079-3092. PubMed ID: 29897777 [TBL] [Abstract][Full Text] [Related]
3. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Zambrano R; Jamroz M; Szczasiuk A; Pujols J; Kmiecik S; Ventura S Nucleic Acids Res; 2015 Jul; 43(W1):W306-13. PubMed ID: 25883144 [TBL] [Abstract][Full Text] [Related]
4. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies? Ratnaparkhi A; Muthu SA; Shiriskar SM; Pissurlenkar RR; Choudhary S; Ahmad B J Biomol Struct Dyn; 2015 Sep; 33(9):1866-79. PubMed ID: 25301518 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. Linding R; Schymkowitz J; Rousseau F; Diella F; Serrano L J Mol Biol; 2004 Sep; 342(1):345-53. PubMed ID: 15313629 [TBL] [Abstract][Full Text] [Related]
6. Incorporating receptor flexibility in the molecular design of protein interfaces. Li L; Liang S; Pilcher MM; Meroueh SO Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of lysozyme phase behavior by additives as function of conformational stability. Galm L; Morgenstern J; Hubbuch J Int J Pharm; 2015 Oct; 494(1):370-80. PubMed ID: 26302861 [TBL] [Abstract][Full Text] [Related]
8. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein. Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325 [TBL] [Abstract][Full Text] [Related]
9. Can molecular dynamics simulations help in discriminating correct from erroneous protein 3D models? Taly JF; Marin A; Gibrat JF BMC Bioinformatics; 2008 Jan; 9():6. PubMed ID: 18179702 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the early stages of human γD-crystallin aggregation process. Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196 [TBL] [Abstract][Full Text] [Related]
11. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics. Tom AM; Rajesh R; Vemparala S J Chem Phys; 2017 Oct; 147(14):144903. PubMed ID: 29031260 [TBL] [Abstract][Full Text] [Related]
12. Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH. Baumgartner K; Galm L; Nötzold J; Sigloch H; Morgenstern J; Schleining K; Suhm S; Oelmeier SA; Hubbuch J Int J Pharm; 2015 Feb; 479(1):28-40. PubMed ID: 25541147 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics of the salt dependence of a cold-adapted enzyme: endonuclease I. Benrezkallah D; Dauchez M; Krallafa AM J Biomol Struct Dyn; 2015; 33(11):2511-21. PubMed ID: 25650046 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the stability of pharmacophore features using molecular dynamics simulations. Wieder M; Perricone U; Boresch S; Seidel T; Langer T Biochem Biophys Res Commun; 2016 Feb; 470(3):685-689. PubMed ID: 26785387 [TBL] [Abstract][Full Text] [Related]
15. Correlation for the partition behavior of proteins in aqueous two-phase systems: effect of surface hydrophobicity and charge. Andrews BA; Schmidt AS; Asenjo JA Biotechnol Bioeng; 2005 May; 90(3):380-90. PubMed ID: 15778987 [TBL] [Abstract][Full Text] [Related]
16. Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Majumdar R; Manikwar P; Hickey JM; Samra HS; Sathish HA; Bishop SM; Middaugh CR; Volkin DB; Weis DD Biochemistry; 2013 May; 52(19):3376-89. PubMed ID: 23594236 [TBL] [Abstract][Full Text] [Related]
17. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802 [TBL] [Abstract][Full Text] [Related]
18. Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils. Muthu SA; Mothi N; Shiriskar SM; Pissurlenkar RR; Kumar A; Ahmad B Arch Biochem Biophys; 2016 Feb; 592():10-9. PubMed ID: 26777461 [TBL] [Abstract][Full Text] [Related]
19. Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. Zacharias M; Springer S Biophys J; 2004 Oct; 87(4):2203-14. PubMed ID: 15454423 [TBL] [Abstract][Full Text] [Related]
20. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Arosio P; Jaquet B; Wu H; Morbidelli M Biophys Chem; 2012 Jul; 168-169():19-27. PubMed ID: 22750560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]