These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26853449)

  • 1. In Vivo Host Response and Degradation of Copolymer Scaffolds Functionalized with Nanodiamonds and Bone Morphogenetic Protein 2.
    Suliman S; Sun Y; Pedersen TO; Xue Y; Nickel J; Waag T; Finne-Wistrand A; Steinmüller-Nethl D; Krueger A; Costea DE; Mustafa K
    Adv Healthc Mater; 2016 Mar; 5(6):730-42. PubMed ID: 26853449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo.
    Suliman S; Xing Z; Wu X; Xue Y; Pedersen TO; Sun Y; Døskeland AP; Nickel J; Waag T; Lygre H; Finne-Wistrand A; Steinmüller-Nethl D; Krueger A; Mustafa K
    J Control Release; 2015 Jan; 197():148-57. PubMed ID: 25445698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes.
    Suliman S; Mustafa K; Krueger A; Steinmüller-Nethl D; Finne-Wistrand A; Osdal T; Hamza AO; Sun Y; Parajuli H; Waag T; Nickel J; Johannessen AC; McCormack E; Costea DE
    Biomaterials; 2016 Jul; 95():11-21. PubMed ID: 27108402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical-size alveolar defect treatment via TGF-ß3 and BMP-2 releasing hybrid constructs.
    Alici-Garipcan A; Korkusuz P; Bilgic E; Askin K; Aydin HM; Ozturk E; Inci I; Ozkizilcik A; Kamile Ozturk K; Piskin E; Vargel I
    J Biomater Sci Polym Ed; 2019 Apr; 30(5):415-436. PubMed ID: 30688157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel.
    Lee J; Choi WI; Tae G; Kim YH; Kang SS; Kim SE; Kim SH; Jung Y; Kim SH
    Acta Biomater; 2011 Jan; 7(1):244-57. PubMed ID: 20801240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering.
    Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V
    Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction.
    Cao L; Yu Y; Wang J; Werkmeister JA; McLean KM; Liu C
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():298-306. PubMed ID: 28254298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation.
    Skodje A; Idris SB; Sun Y; Bartaula S; Mustafa K; Finne-Wistrand A; Wikesjö UM; Leknes KN
    J Biomed Mater Res A; 2015 Jun; 103(6):1991-8. PubMed ID: 25231842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells.
    Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K
    J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS
    Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Morphogenetic Protein-2 Adsorption onto Poly-ɛ-caprolactone Better Preserves Bioactivity In Vitro and Produces More Bone In Vivo than Conjugation Under Clinically Relevant Loading Scenarios.
    Patel JJ; Flanagan CL; Hollister SJ
    Tissue Eng Part C Methods; 2015 May; 21(5):489-98. PubMed ID: 25345571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of novel bioresorbable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after implantation.
    Feng G; Qin C; Yi X; Xia J; Chen J; Chen X; Chen T; Jiang X
    J Mater Sci Mater Med; 2018 Jul; 29(8):112. PubMed ID: 30019182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds.
    Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ
    Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds.
    Kim TH; Yun YP; Park YE; Lee SH; Yong W; Kundu J; Jung JW; Shim JH; Cho DW; Kim SE; Song HR
    Biomed Mater; 2014 Apr; 9(2):025008. PubMed ID: 24518200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation.
    Ji W; Yang F; Seyednejad H; Chen Z; Hennink WE; Anderson JM; van den Beucken JJ; Jansen JA
    Biomaterials; 2012 Oct; 33(28):6604-14. PubMed ID: 22770568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.