These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26853498)

  • 1. Internal structure of sponge glass fiber revealed by ptychographic nanotomography.
    Birkbak ME; Guizar-Sicairos M; Holler M; Birkedal H
    J Struct Biol; 2016 Apr; 194(1):124-8. PubMed ID: 26853498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological glass fibers: correlation between optical and structural properties.
    Aizenberg J; Sundar VC; Yablon AD; Weaver JC; Chen G
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3358-63. PubMed ID: 14993612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping highly regular glass architectures: A lesson from nature.
    Schoeppler V; Reich E; Vacelet J; Rosenthal M; Pacureanu A; Rack A; Zaslansky P; Zolotoyabko E; Zlotnikov I
    Sci Adv; 2017 Oct; 3(10):eaao2047. PubMed ID: 29057327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge.
    Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P
    J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis.
    Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F
    J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesostructure from hydration gradients in demosponge biosilica.
    Neilson JR; George NC; Murr MM; Seshadri R; Morse DE
    Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perfectly periodic three-dimensional protein/silica mesoporous structure produced by an organism.
    Zlotnikov I; Werner P; Blumtritt H; Graff A; Dauphin Y; Zolotoyabko E; Fratzl P
    Adv Mater; 2014 Mar; 26(11):1682-7. PubMed ID: 24338871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.
    Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U
    Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the structure and morphogenesis of the giant basal spicule of the glass sponge Monorhaphis chuni.
    Pisera A; Łukowiak M; Masse S; Tabachnick K; Fromont J; Ehrlich H; Bertolino M
    Front Zool; 2021 Nov; 18(1):58. PubMed ID: 34749755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni.
    Wang X; Wiens M; Schröder HC; Jochum KP; Schlossmacher U; Götz H; Duschner H; Müller WE
    J Exp Biol; 2011 Jun; 214(Pt 12):2047-56. PubMed ID: 21613521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica deposition in Demosponges: spiculogenesis in Crambe crambe.
    Uriz MJ; Turon X; Becerro MA
    Cell Tissue Res; 2000 Aug; 301(2):299-309. PubMed ID: 10955725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica structure in the spicules of the sponge Suberites domuncula.
    Holzhüter G; Lakshminarayanan K; Gerber T
    Anal Bioanal Chem; 2005 Jun; 382(4):1121-6. PubMed ID: 15886857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic crystal lattices in the axial filament of silica spicules of Demospongiae.
    Werner P; Blumtritt H; Natalio F
    J Struct Biol; 2017 Jun; 198(3):186-195. PubMed ID: 28323140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range crystalline order in spicules from the calcareous sponge Paraleucilla magna (Porifera, Calcarea).
    Rossi AL; Campos AP; Barroso MM; Klautau M; Archanjo BS; Borojevic R; Farina M; Werckmann J
    Acta Biomater; 2014 Sep; 10(9):3875-84. PubMed ID: 24487057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni.
    Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M
    J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.