These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 26853682)
1. Shape-dependent internalization kinetics of nanoparticles by membranes. Chen L; Xiao S; Zhu H; Wang L; Liang H Soft Matter; 2016 Mar; 12(9):2632-41. PubMed ID: 26853682 [TBL] [Abstract][Full Text] [Related]
2. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. Shen Z; Ye H; Yi X; Li Y ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506 [TBL] [Abstract][Full Text] [Related]
3. Cooperative wrapping of nanoparticles by membrane tubes. Raatz M; Lipowsky R; Weikl TR Soft Matter; 2014 May; 10(20):3570-7. PubMed ID: 24658648 [TBL] [Abstract][Full Text] [Related]
4. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis. Deng H; Dutta P; Liu J Soft Matter; 2019 Jun; 15(25):5128-5137. PubMed ID: 31190048 [TBL] [Abstract][Full Text] [Related]
5. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes. Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048 [TBL] [Abstract][Full Text] [Related]
6. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles. Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774 [TBL] [Abstract][Full Text] [Related]
7. The role of membrane curvature for the wrapping of nanoparticles. Bahrami AH; Lipowsky R; Weikl TR Soft Matter; 2016 Jan; 12(2):581-7. PubMed ID: 26506073 [TBL] [Abstract][Full Text] [Related]
8. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. Agudo-Canalejo J; Lipowsky R ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649 [TBL] [Abstract][Full Text] [Related]
9. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Li Y; Yue T; Yang K; Zhang X Biomaterials; 2012 Jun; 33(19):4965-73. PubMed ID: 22483010 [TBL] [Abstract][Full Text] [Related]
10. Spheres and prolate and oblate ellipsoids from an analytical solution of the spontaneous-curvature fluid-membrane model. Liu QH; Haijun Z; Liu JX; Zhong-Can OY Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3227-33. PubMed ID: 11970131 [TBL] [Abstract][Full Text] [Related]
15. Shape and orientation matter for the cellular uptake of nonspherical particles. Dasgupta S; Auth T; Gompper G Nano Lett; 2014 Feb; 14(2):687-93. PubMed ID: 24383757 [TBL] [Abstract][Full Text] [Related]
16. Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. Vahidkhah K; Bagchi P Soft Matter; 2015 Mar; 11(11):2097-109. PubMed ID: 25601616 [TBL] [Abstract][Full Text] [Related]
17. Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles. Yu Q; Dasgupta S; Auth T; Gompper G Nano Lett; 2020 Mar; 20(3):1662-1668. PubMed ID: 32046489 [TBL] [Abstract][Full Text] [Related]
18. Freezing or wrapping: the role of particle size in the mechanism of nanoparticle-biomembrane interaction. Zhang S; Nelson A; Beales PA Langmuir; 2012 Sep; 28(35):12831-7. PubMed ID: 22717012 [TBL] [Abstract][Full Text] [Related]
19. Discontinuous wrapping transition of spherical nanoparticles by tensionless lipid membranes. Spangler EJ; Laradji M J Chem Phys; 2020 Mar; 152(10):104902. PubMed ID: 32171223 [TBL] [Abstract][Full Text] [Related]
20. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology. Shin JM; Kim Y; Yun H; Yi GR; Kim BJ ACS Nano; 2017 Feb; 11(2):2133-2142. PubMed ID: 28165714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]