These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26853784)

  • 1. Photoelectron transport tuning of self-assembled subbands.
    Xiong Z; Wang X; Wu W; Wang X; Peng L; Zhao Y; Yan D; Jiang T; Shen C; Zhan Z; Cao L; Li W
    Nanoscale; 2016 Feb; 8(8):4628-34. PubMed ID: 26853784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature resonant quantum tunneling transport of macroscopic systems.
    Xiong Z; Wang X; Yan D; Wu W; Peng L; Li W; Zhao Y; Wang X; An X; Xiao T; Zhan Z; Wang Z; Chen X
    Nanoscale; 2014 Nov; 6(22):13876-81. PubMed ID: 25307500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites.
    Cox JD; Singh MR; Antón MA; Carreño F
    J Phys Condens Matter; 2013 Sep; 25(38):385302. PubMed ID: 23988724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling quantum-dot light absorption and emission by a surface-plasmon field.
    Huang D; Easter M; Gumbs G; Maradudin AA; Lin SY; Cardimona DA; Zhang X
    Opt Express; 2014 Nov; 22(22):27576-605. PubMed ID: 25401904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation.
    Vainorius N; Lehmann S; Gustafsson A; Samuelson L; Dick KA; Pistol ME
    Nano Lett; 2016 Apr; 16(4):2774-80. PubMed ID: 27004550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black Phosphorus as Tunable Van der Waals Quantum Wells with High Optical Quality.
    Zhang G; Huang S; Chaves A; Yan H
    ACS Nano; 2023 Mar; 17(6):6073-6080. PubMed ID: 36912761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
    Li JB; Kim NC; Cheng MT; Zhou L; Hao ZH; Wang QQ
    Opt Express; 2012 Jan; 20(2):1856-61. PubMed ID: 22274530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum dot in topological insulator nanofilm.
    Herath TM; Hewageegana P; Apalkov V
    J Phys Condens Matter; 2014 Mar; 26(11):115302. PubMed ID: 24590177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic properties of Ag nanoparticles embedded in GeO2-SiO2 matrix by atom beam sputtering.
    Mohapatra S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3878-83. PubMed ID: 26766559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating.
    Shibata K; Yuan H; Iwasa Y; Hirakawa K
    Nat Commun; 2013; 4():2664. PubMed ID: 24154536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric properties of a quantum dot array connected to metallic electrodes.
    Kuo DM; Chang YC
    Nanotechnology; 2013 May; 24(17):175403. PubMed ID: 23558456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field.
    Beirne GJ; Hermannstädter C; Wang L; Rastelli A; Schmidt OG; Michler P
    Phys Rev Lett; 2006 Apr; 96(13):137401. PubMed ID: 16712031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E; Keuleyan S; Guyot-Sionnest P
    Nanotechnology; 2012 May; 23(17):175705. PubMed ID: 22481378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
    Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E
    J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipole plasmon resonance induced large third-order optical nonlinearity of Au triangular nanoprism in infrared region.
    Chen Z; Dai H; Liu J; Xu H; Li Z; Zhou ZK; Han JB
    Opt Express; 2013 Jul; 21(15):17568-75. PubMed ID: 23938629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the optical gap of silicon quantum dots without changing their size.
    Li H; Wu Z; Zhou T; Sellinger A; Lusk MT
    Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles.
    Ramírez HY; Flórez J; Camacho ÁS
    Phys Chem Chem Phys; 2015 Oct; 17(37):23938-46. PubMed ID: 26313884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode.
    Kuhlmann AV; Houel J; Brunner D; Ludwig A; Reuter D; Wieck AD; Warburton RJ
    Rev Sci Instrum; 2013 Jul; 84(7):073905. PubMed ID: 23902082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.