These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26853882)

  • 1. Comparison of design strategies for α-helix backbone modification in a protein tertiary fold.
    Tavenor NA; Reinert ZE; Lengyel GA; Griffith BD; Horne WS
    Chem Commun (Camb); 2016 Mar; 52(19):3789-92. PubMed ID: 26853882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-like tertiary folding behavior from heterogeneous backbones.
    Reinert ZE; Lengyel GA; Horne WS
    J Am Chem Soc; 2013 Aug; 135(34):12528-31. PubMed ID: 23937097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of backbone modification in protein β-sheets by α→γ residue replacement and α-residue methylation.
    Lengyel GA; Reinert ZE; Griffith BD; Horne WS
    Org Biomol Chem; 2014 Aug; 12(29):5375-81. PubMed ID: 24909436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foldamer Tertiary Structure through Sequence-Guided Protein Backbone Alteration.
    George KL; Horne WS
    Acc Chem Res; 2018 May; 51(5):1220-1228. PubMed ID: 29672021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous-Backbone Foldamer Mimics of Zinc Finger Tertiary Structure.
    George KL; Horne WS
    J Am Chem Soc; 2017 Jun; 139(23):7931-7938. PubMed ID: 28509549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics.
    Santhouse JR; Rao SR; Horne WS
    Methods Enzymol; 2021; 656():93-122. PubMed ID: 34325801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone Modification in a Protein Hydrophobic Core.
    Lin Y; Horne WS
    Chemistry; 2024 May; ():e202401890. PubMed ID: 38753977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and characterization of two proteins with 88% sequence identity but different structure and function.
    Alexander PA; He Y; Chen Y; Orban J; Bryan PN
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):11963-8. PubMed ID: 17609385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation.
    Pal L; Chakrabarti P; Basu G
    J Mol Biol; 2003 Feb; 326(1):273-91. PubMed ID: 12547209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric protein design from conserved supersecondary structures.
    ElGamacy M; Coles M; Lupas A
    J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins.
    Dantas G; Kuhlman B; Callender D; Wong M; Baker D
    J Mol Biol; 2003 Sep; 332(2):449-60. PubMed ID: 12948494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding free energy function selects native-like protein sequences in the core but not on the surface.
    Jaramillo A; Wernisch L; Héry S; Wodak SJ
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13554-9. PubMed ID: 12368470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between sequence determinants of stability for two natural homologous proteins with different folds.
    Van Dorn LO; Newlove T; Chang S; Ingram WM; Cordes MH
    Biochemistry; 2006 Sep; 45(35):10542-53. PubMed ID: 16939206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is protein folding hierarchic? II. Folding intermediates and transition states.
    Baldwin RL; Rose GD
    Trends Biochem Sci; 1999 Feb; 24(2):77-83. PubMed ID: 10098403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a 20-amino acid, three-stranded beta-sheet protein.
    Kortemme T; Ramírez-Alvarado M; Serrano L
    Science; 1998 Jul; 281(5374):253-6. PubMed ID: 9657719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure.
    Reinert ZE; Horne WS
    Org Biomol Chem; 2014 Nov; 12(44):8796-802. PubMed ID: 25285575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing sequence dependence of folding pathway of α-helix bundle proteins through free energy landscape analysis.
    Shao Q
    J Phys Chem B; 2014 Jun; 118(22):5891-900. PubMed ID: 24837534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.