These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26853995)

  • 1. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions.
    Kim J; Lee J; Wu C; Nam S; Di Carlo D; Lee W
    Lab Chip; 2016 Mar; 16(6):992-1001. PubMed ID: 26853995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial focusing in triangular microchannels with various apex angles.
    Kim JA; Kommajosula A; Choi YH; Lee JR; Jeon EC; Ganapathysubramanian B; Lee W
    Biomicrofluidics; 2020 Mar; 14(2):024105. PubMed ID: 32231759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-Dependent Inertial Focusing Position Shift and Particle Separations in Triangular Microchannels.
    Kim JA; Lee JR; Je TJ; Jeon EC; Lee W
    Anal Chem; 2018 Feb; 90(3):1827-1835. PubMed ID: 29271639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel.
    Mashhadian A; Shamloo A
    Anal Chim Acta; 2019 Nov; 1083():137-149. PubMed ID: 31493804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation.
    Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of inertial focusing in microchannels.
    Zhou J; Papautsky I
    Lab Chip; 2013 Mar; 13(6):1121-32. PubMed ID: 23353899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle slip velocity influences inertial focusing of particles in curved microchannels.
    Deshpande S; Tallapragada P
    Sci Rep; 2018 Aug; 8(1):11852. PubMed ID: 30087382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.
    Liu C; Hu G; Jiang X; Sun J
    Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure-induced helical vortices allow single-stream and long-term inertial focusing.
    Chung AJ; Pulido D; Oka JC; Amini H; Masaeli M; Di Carlo D
    Lab Chip; 2013 Aug; 13(15):2942-9. PubMed ID: 23665981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial Focusing of Microparticles in Curvilinear Microchannels.
    Özbey A; Karimzadehkhouei M; Akgönül S; Gozuacik D; Koşar A
    Sci Rep; 2016 Dec; 6():38809. PubMed ID: 27991494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning with Coflow Systems.
    Lee D; Nam SM; Kim JA; Di Carlo D; Lee W
    Anal Chem; 2018 Feb; 90(4):2902-2911. PubMed ID: 29376342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel.
    Cha H; Dai Y; Hansen HHWB; Ouyang L; Chen X; Kang X; An H; Ta HT; Nguyen NT; Zhang J
    Cyborg Bionic Syst; 2023; 4():0036. PubMed ID: 37342212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering viscoelastic cell manipulation in rectangular microchannels.
    Suzuki T; Kalyan S; Berlinicke C; Yoseph S; Zack DJ; Hur SC
    Phys Fluids (1994); 2023 Oct; 35(10):103117. PubMed ID: 37849975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and numerical study of elasto-inertial focusing in straight channels.
    Raoufi MA; Mashhadian A; Niazmand H; Asadnia M; Razmjou A; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034103. PubMed ID: 31123535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding.
    Li D; Lu X; Xuan X
    Anal Chem; 2016 Dec; 88(24):12303-12309. PubMed ID: 28193020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of inertial microfluidics using axial control forces.
    Prohm C; Stark H
    Lab Chip; 2014 Jun; 14(12):2115-23. PubMed ID: 24811136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.