These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 26854197)
1. Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. Rehberg M; Nekolla K; Sellner S; Praetner M; Mildner K; Zeuschner D; Krombach F Small; 2016 Apr; 12(14):1882-90. PubMed ID: 26854197 [TBL] [Abstract][Full Text] [Related]
2. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. Epperla CP; Mohan N; Chang CW; Chen CC; Chang HC Small; 2015 Dec; 11(45):6097-105. PubMed ID: 26479149 [TBL] [Abstract][Full Text] [Related]
4. Intercellular communication through contacts between continuous pseudopodial extensions in a macrophage-like cell line. Arrevillaga-Boni G; Hernández-Ruiz M; Castillo EC; Ortiz-Navarrete V Cell Commun Adhes; 2014 Aug; 21(4):213-20. PubMed ID: 24896643 [TBL] [Abstract][Full Text] [Related]
5. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. Onfelt B; Nedvetzki S; Benninger RK; Purbhoo MA; Sowinski S; Hume AN; Seabra MC; Neil MA; French PM; Davis DM J Immunol; 2006 Dec; 177(12):8476-83. PubMed ID: 17142745 [TBL] [Abstract][Full Text] [Related]
6. Live cell superresolution-structured illumination microscopy imaging analysis of the intercellular transport of microvesicles and costimulatory proteins via nanotubes between immune cells. Halász H; Ghadaksaz AR; Madarász T; Huber K; Harami G; Tóth EA; Osteikoetxea-Molnár A; Kovács M; Balogi Z; Nyitrai M; Matkó J; Szabó-Meleg E Methods Appl Fluoresc; 2018 Aug; 6(4):045005. PubMed ID: 30039805 [TBL] [Abstract][Full Text] [Related]
7. LYVE-1-positive macrophages are present in normal murine eyes. Xu H; Chen M; Reid DM; Forrester JV Invest Ophthalmol Vis Sci; 2007 May; 48(5):2162-71. PubMed ID: 17460275 [TBL] [Abstract][Full Text] [Related]
8. Cutting edge: Membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. Chinnery HR; Pearlman E; McMenamin PG J Immunol; 2008 May; 180(9):5779-83. PubMed ID: 18424694 [TBL] [Abstract][Full Text] [Related]
9. Intercellular transportation of quantum dots mediated by membrane nanotubes. He K; Luo W; Zhang Y; Liu F; Liu D; Xu L; Qin L; Xiong C; Lu Z; Fang X; Zhang Y ACS Nano; 2010 Jun; 4(6):3015-22. PubMed ID: 20524630 [TBL] [Abstract][Full Text] [Related]
11. Intracellular trafficking of solid lipid nanoparticles and their distribution between cells through tunneling nanotubes. Kristl J; Plajnšek KT; Kreft ME; Janković B; Kocbek P Eur J Pharm Sci; 2013 Sep; 50(1):139-48. PubMed ID: 23628779 [TBL] [Abstract][Full Text] [Related]
12. Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake. Fletcher LM; Welsh GI; Oatey PB; Tavaré JM Biochem J; 2000 Dec; 352 Pt 2(Pt 2):267-76. PubMed ID: 11085918 [TBL] [Abstract][Full Text] [Related]
13. The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Luciani N; Wilhelm C; Gazeau F Biomaterials; 2010 Sep; 31(27):7061-9. PubMed ID: 20619790 [TBL] [Abstract][Full Text] [Related]
14. Vesicle Size Regulates Nanotube Formation in the Cell. Su QP; Du W; Ji Q; Xue B; Jiang D; Zhu Y; Ren H; Zhang C; Lou J; Yu L; Sun Y Sci Rep; 2016 Apr; 6():24002. PubMed ID: 27052881 [TBL] [Abstract][Full Text] [Related]
15. Self-Assembled Hybrids of Fluorescent Carbon Dots and PAMAM Dendrimers for Epirubicin Delivery and Intracellular Imaging. Matai I; Sachdev A; Gopinath P ACS Appl Mater Interfaces; 2015 Jun; 7(21):11423-35. PubMed ID: 25946165 [TBL] [Abstract][Full Text] [Related]
16. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Mendes-Jorge L; Ramos D; Luppo M; Llombart C; Alexandre-Pires G; Nacher V; Melgarejo V; Correia M; Navarro M; Carretero A; Tafuro S; Rodriguez-Baeza A; Esperança-Pina JA; Bosch F; Ruberte J Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5997-6005. PubMed ID: 19608545 [TBL] [Abstract][Full Text] [Related]
17. Tunneling nanotubes enable intercellular transfer of MHC class I molecules. Schiller C; Huber JE; Diakopoulos KN; Weiss EH Hum Immunol; 2013 Apr; 74(4):412-6. PubMed ID: 23228397 [TBL] [Abstract][Full Text] [Related]
18. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. He K; Shi X; Zhang X; Dang S; Ma X; Liu F; Xu M; Lv Z; Han D; Fang X; Zhang Y Cardiovasc Res; 2011 Oct; 92(1):39-47. PubMed ID: 21719573 [TBL] [Abstract][Full Text] [Related]
19. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Xu Y; Jia XH; Yin XB; He XW; Zhang YK Anal Chem; 2014 Dec; 86(24):12122-9. PubMed ID: 25383762 [TBL] [Abstract][Full Text] [Related]
20. A continuous network of lipid nanotubes fabricated from the gliding motility of kinesin powered microtubule filaments. Bouxsein NF; Carroll-Portillo A; Bachand M; Sasaki DY; Bachand GD Langmuir; 2013 Mar; 29(9):2992-9. PubMed ID: 23391254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]