These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 26854322)
1. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Teng H; Chen L Crit Rev Food Sci Nutr; 2017 Nov; 57(16):3438-3448. PubMed ID: 26854322 [TBL] [Abstract][Full Text] [Related]
2. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD; Staerk D; Jäger AK J Ethnopharmacol; 2016 Jun; 186():189-195. PubMed ID: 27041401 [TBL] [Abstract][Full Text] [Related]
3. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Tundis R; Loizzo MR; Menichini F Mini Rev Med Chem; 2010 Apr; 10(4):315-31. PubMed ID: 20470247 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). Poovitha S; Parani M BMC Complement Altern Med; 2016 Jul; 16 Suppl 1(Suppl 1):185. PubMed ID: 27454418 [TBL] [Abstract][Full Text] [Related]
5. Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects. Sun H; Wang D; Song X; Zhang Y; Ding W; Peng X; Zhang X; Li Y; Ma Y; Wang R; Yu P J Agric Food Chem; 2017 Mar; 65(8):1574-1581. PubMed ID: 28132506 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
7. Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. Ademiluyi AO; Oboh G J Med Food; 2013 Jan; 16(1):88-93. PubMed ID: 23216107 [TBL] [Abstract][Full Text] [Related]
8. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Papoutsis K; Zhang J; Bowyer MC; Brunton N; Gibney ER; Lyng J Food Chem; 2021 Feb; 338():128119. PubMed ID: 33091976 [TBL] [Abstract][Full Text] [Related]
9. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. Deo P; Hewawasam E; Karakoulakis A; Claudie DJ; Nelson R; Simpson BS; Smith NM; Semple SJ BMC Complement Altern Med; 2016 Nov; 16(1):435. PubMed ID: 27809834 [TBL] [Abstract][Full Text] [Related]
10. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. Adisakwattana S; Ruengsamran T; Kampa P; Sompong W BMC Complement Altern Med; 2012 Jul; 12():110. PubMed ID: 22849553 [TBL] [Abstract][Full Text] [Related]
11. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Ibrahim MA; Koorbanally NA; Islam MS Acta Pharm; 2014 Sep; 64(3):311-24. PubMed ID: 25296677 [TBL] [Abstract][Full Text] [Related]
12. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. McCue P; Kwon YI; Shetty K Asia Pac J Clin Nutr; 2005; 14(2):145-52. PubMed ID: 15927931 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory mechanism of phenolic compounds in rapeseed oil on α-amylase and α-glucosidase: Spectroscopy, molecular docking, and molecular dynamic simulation. Liu H; Zheng C; Li Z; Xia X; Jiang D; Wang W; Zhang R; Xiang X Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122251. PubMed ID: 36542921 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts. Sharifi-Rad M; Tayeboon GS; Sharifi-Rad J; Iriti M; Varoni EM; Razazi S Cell Mol Biol (Noisy-le-grand); 2016 May; 62(6):80-5. PubMed ID: 27262808 [TBL] [Abstract][Full Text] [Related]
16. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Rasouli H; Hosseini-Ghazvini SM; Adibi H; Khodarahmi R Food Funct; 2017 May; 8(5):1942-1954. PubMed ID: 28470323 [TBL] [Abstract][Full Text] [Related]
17. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake. Li K; Yao F; Du J; Deng X; Li C J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase. Meng Y; Su A; Yuan S; Zhao H; Tan S; Hu C; Deng H; Guo Y Plant Foods Hum Nutr; 2016 Dec; 71(4):444-449. PubMed ID: 27787697 [TBL] [Abstract][Full Text] [Related]
19. Inhibitors of α-glucosidase and α-amylase from Cyperus rotundus. Tran HH; Nguyen MC; Le HT; Nguyen TL; Pham TB; Chau VM; Nguyen HN; Nguyen TD Pharm Biol; 2014 Jan; 52(1):74-7. PubMed ID: 24044731 [TBL] [Abstract][Full Text] [Related]
20. Screening of antidiabetic and antioxidant activities of medicinal plants. Shori AB J Integr Med; 2015 Sep; 13(5):297-305. PubMed ID: 26343100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]