BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26854603)

  • 1. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.
    Stojanovski BM; Breydo L; Uversky VN; Ferreira GC
    Biochim Biophys Acta; 2016 May; 1864(5):441-52. PubMed ID: 26854603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase.
    Na I; Catena D; Kong MJ; Ferreira GC; Uversky VN
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29958424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis.
    Stojanovski BM; Hunter GA; Na I; Uversky VN; Jiang RHY; Ferreira GC
    Mol Genet Metab; 2019 Nov; 128(3):178-189. PubMed ID: 31345668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.
    Stojanovski BM; Ferreira GC
    J Biol Chem; 2015 Dec; 290(52):30750-61. PubMed ID: 26511319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Murine erythroid 5-aminolevulinate synthase: Adenosyl-binding site Lys221 modulates substrate binding and catalysis.
    Stojanovski BM; Ferreira GC
    FEBS Open Bio; 2015; 5():824-31. PubMed ID: 26605136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unstable reaction intermediates and hysteresis during the catalytic cycle of 5-aminolevulinate synthase: implications from using pseudo and alternate substrates and a promiscuous enzyme variant.
    Stojanovski BM; Hunter GA; Jahn M; Jahn D; Ferreira GC
    J Biol Chem; 2014 Aug; 289(33):22915-22925. PubMed ID: 24920668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5'-phosphate cofactor.
    Gong J; Hunter GA; Ferreira GC
    Biochemistry; 1998 Mar; 37(10):3509-17. PubMed ID: 9521672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carboxyl-terminal region of erythroid-specific 5-aminolevulinate synthase acts as an intrinsic modifier for its catalytic activity and protein stability.
    Kadirvel S; Furuyama K; Harigae H; Kaneko K; Tamai Y; Ishida Y; Shibahara S
    Exp Hematol; 2012 Jun; 40(6):477-86.e1. PubMed ID: 22269113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The major splice variant of human 5-aminolevulinate synthase-2 contributes significantly to erythroid heme biosynthesis.
    Cox TC; Sadlon TJ; Schwarz QP; Matthews CS; Wise PD; Cox LL; Bottomley SS; May BK
    Int J Biochem Cell Biol; 2004 Feb; 36(2):281-95. PubMed ID: 14643893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics analysis of the structural and dynamic properties of the functionally enhanced hepta-variant of mouse 5-aminolevulinate synthase.
    Na I; DeForte S; Stojanovski BM; Ferreira GC; Uversky VN
    J Biomol Struct Dyn; 2018 Jan; 36(1):152-165. PubMed ID: 27928941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-aminolevulinate synthase: catalysis of the first step of heme biosynthesis.
    Hunter GA; Ferreira GC
    Cell Mol Biol (Noisy-le-grand); 2009 Feb; 55(1):102-10. PubMed ID: 19268008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia.
    Fujiwara T; Okamoto K; Niikuni R; Takahashi K; Okitsu Y; Fukuhara N; Onishi Y; Ishizawa K; Ichinohasama R; Nakamura Y; Nakajima M; Tanaka T; Harigae H
    Biochem Biophys Res Commun; 2014 Nov; 454(1):102-8. PubMed ID: 25450364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase.
    Munakata H; Sun JY; Yoshida K; Nakatani T; Honda E; Hayakawa S; Furuyama K; Hayashi N
    J Biochem; 2004 Aug; 136(2):233-8. PubMed ID: 15496594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis.
    Sadlon TJ; Dell'Oso T; Surinya KH; May BK
    Int J Biochem Cell Biol; 1999 Oct; 31(10):1153-67. PubMed ID: 10582344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans.
    Astner I; Schulze JO; van den Heuvel J; Jahn D; Schubert WD; Heinz DW
    EMBO J; 2005 Sep; 24(18):3166-77. PubMed ID: 16121195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Aminolevulinate synthase and the first step of heme biosynthesis.
    Ferreira GC; Gong J
    J Bioenerg Biomembr; 1995 Apr; 27(2):151-9. PubMed ID: 7592562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.
    Brown BL; Kardon JR; Sauer RT; Baker TA
    Structure; 2018 Apr; 26(4):580-589.e4. PubMed ID: 29551290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of the murine erythroid-specific 5-aminolevulinate synthase gene.
    Kramer MF; Gunaratne P; Ferreira GC
    Gene; 2000 Apr; 247(1-2):153-66. PubMed ID: 10773455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythroid 5-aminolevulinate synthase and X-linked sideroblastic anemia.
    Ferreira GC
    J Fla Med Assoc; 1993 Jul; 80(7):481-3. PubMed ID: 8089650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.