BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26854663)

  • 1. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.
    Baker MA; Hynson RM; Ganuelas LA; Mohammadi NS; Liew CW; Rey AA; Duff AP; Whitten AE; Jeffries CM; Delalez NJ; Morimoto YV; Stock D; Armitage JP; Turberfield AJ; Namba K; Berry RM; Lee LK
    Nat Struct Mol Biol; 2016 Mar; 23(3):197-203. PubMed ID: 26854663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring.
    Kim EA; Panushka J; Meyer T; Ide N; Carlisle R; Baker S; Blair DF
    J Mol Biol; 2017 Jul; 429(15):2353-2359. PubMed ID: 28625846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.
    Lee LK; Ginsburg MA; Crovace C; Donohoe M; Stock D
    Nature; 2010 Aug; 466(7309):996-1000. PubMed ID: 20676082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture of the Flagellar Switch Complex of Escherichia coli: Conformational Plasticity of FliG and Implications for Adaptive Remodeling.
    Kim EA; Panushka J; Meyer T; Carlisle R; Baker S; Ide N; Lynch M; Crane BR; Blair DF
    J Mol Biol; 2017 May; 429(9):1305-1320. PubMed ID: 28259628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular motors of the bacterial flagella.
    Minamino T; Imada K; Namba K
    Curr Opin Struct Biol; 2008 Dec; 18(6):693-701. PubMed ID: 18848888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch.
    Bai F; Branch RW; Nicolau DV; Pilizota T; Steel BC; Maini PK; Berry RM
    Science; 2010 Feb; 327(5966):685-9. PubMed ID: 20133571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS.
    Paul K; Carlquist WC; Blair DF
    J Bacteriol; 2011 Nov; 193(21):5914-22. PubMed ID: 21890701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor.
    Kinoshita M; Namba K; Minamino T
    Genes Cells; 2018 Mar; 23(3):241-247. PubMed ID: 29405551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG.
    Levenson R; Zhou H; Dahlquist FW
    Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly and stability of flagellar motor in Escherichia coli.
    Li H; Sourjik V
    Mol Microbiol; 2011 May; 80(4):886-99. PubMed ID: 21244534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overproduced Salmonella typhimurium flagellar motor switch complexes.
    Lux R; Kar N; Khan S
    J Mol Biol; 2000 May; 298(4):577-83. PubMed ID: 10788321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex.
    Brown PN; Terrazas M; Paul K; Blair DF
    J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching.
    Lam KH; Ip WS; Lam YW; Chan SO; Ling TK; Au SW
    Structure; 2012 Feb; 20(2):315-25. PubMed ID: 22325779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
    Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T
    Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable symmetry in Salmonella typhimurium flagellar motors.
    Young HS; Dang H; Lai Y; DeRosier DJ; Khan S
    Biophys J; 2003 Jan; 84(1):571-7. PubMed ID: 12524310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli.
    Paul K; Brunstetter D; Titen S; Blair DF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of FliN subunits in the flagellar motor of Escherichia coli.
    Paul K; Blair DF
    J Bacteriol; 2006 Apr; 188(7):2502-11. PubMed ID: 16547037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
    Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR
    Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.