These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26854726)

  • 1. Linear solvation energy relationship for the adsorption of synthetic organic compounds on single-walled carbon nanotubes in water.
    Ding H; Chen C; Zhang X
    SAR QSAR Environ Res; 2016; 27(1):31-45. PubMed ID: 26854726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LSER model for organic compounds adsorption by single-walled carbon nanotubes: Comparison with multi-walled carbon nanotubes and activated carbon.
    Yu X; Sun W; Ni J
    Environ Pollut; 2015 Nov; 206():652-60. PubMed ID: 26319510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes.
    Ersan G; Apul OG; Karanfil T
    Water Res; 2016 Jul; 98():28-38. PubMed ID: 27064209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes.
    Apul OG; Wang Q; Shao T; Rieck JR; Karanfil T
    Environ Sci Technol; 2013 Mar; 47(5):2295-303. PubMed ID: 22747100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs.
    Ghosh S; Ojha PK; Roy K
    Chemosphere; 2019 Aug; 228():545-555. PubMed ID: 31051358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms.
    Wang Y; Chen J; Tang W; Xia D; Liang Y; Li X
    Chemosphere; 2019 Jan; 214():79-84. PubMed ID: 30261420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the interactions of organic compounds with multi-walled carbon nanotubes by self-packed HPLC column and linear solvation energy relationship.
    Chu Y; Li X; Xie H; Fu Z; Yang X; Qiao X; Cai X; Chen J
    J Hazard Mater; 2013 Dec; 263 Pt 2():550-5. PubMed ID: 24231331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption modeling of organic compounds (OCs) by carbon nanotubes (CNTs): role of OC and CNT properties on the linear solvation energy relationship.
    Ersan G
    Water Sci Technol; 2021 Oct; 84(7):1635-1647. PubMed ID: 34662302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds.
    Zhang S; Shado T; Bekaroglu SS; Karanfil T
    Environ Sci Technol; 2009 Aug; 43(15):5719-25. PubMed ID: 19731668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration dependent adsorption of aromatic organic compounds by SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of biomolecules and agrochemicals.
    Lata S; Vikas
    J Mol Graph Model; 2018 Oct; 85():232-241. PubMed ID: 30227368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear solvation energy relationship to predict the adsorption of aromatic contaminants on graphene oxide.
    Shan S; Zhao Y; Tang H; Cui F
    Chemosphere; 2017 Oct; 185():826-832. PubMed ID: 28735235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-mechanical LSERs for the concentration-dependent adsorption of aromatic organic compounds by activated carbon: Applications and comparison with carbon nanotubes.
    Lata S; Vikas
    SAR QSAR Environ Res; 2019 Feb; 30(2):109-130. PubMed ID: 30727761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes.
    Apul OG; Zhou Y; Karanfil T
    J Hazard Mater; 2015 Sep; 295():138-44. PubMed ID: 25897695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating adsorption of organic pollutants on finite (8,0) single-walled carbon nanotubes in water.
    Zou M; Zhang J; Chen J; Li X
    Environ Sci Technol; 2012 Aug; 46(16):8887-94. PubMed ID: 22816771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico model for predicting soil organic carbon normalized sorption coefficient (K(OC)) of organic chemicals.
    Wang Y; Chen J; Yang X; Lyakurwa F; Li X; Qiao X
    Chemosphere; 2015 Jan; 119():438-444. PubMed ID: 25084062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth.
    Xu J; Zhu L; Fang D; Liu L; Bai Z; Wang L; Xu W
    SAR QSAR Environ Res; 2013 Jan; 24(1):47-59. PubMed ID: 23066906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs).
    Lou JC; Jung MJ; Yang HW; Han JY; Huang WH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(12):1357-65. PubMed ID: 21942388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review.
    Apul OG; Karanfil T
    Water Res; 2015 Jan; 68():34-55. PubMed ID: 25462715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes.
    Ersan G; Apul OG; Karanfil T
    Sci Total Environ; 2019 Mar; 654():28-34. PubMed ID: 30439691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.
    Zhang S; Shao T; Karanfil T
    Water Res; 2011 Jan; 45(3):1378-86. PubMed ID: 21093009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.