These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26854735)
1. Altered S-nitrosothiol homeostasis provides a survival advantage to breast cancer cells in HER2 tumors and reduces their sensitivity to trastuzumab. Cañas A; López-Sánchez LM; Peñarando J; Valverde A; Conde F; Hernández V; Fuentes E; López-Pedrera C; de la Haba-Rodríguez JR; Aranda E; Rodríguez-Ariza A Biochim Biophys Acta; 2016 Apr; 1862(4):601-610. PubMed ID: 26854735 [TBL] [Abstract][Full Text] [Related]
2. Maintenance of S-nitrosothiol homeostasis plays an important role in growth suppression of estrogen receptor-positive breast tumors. Cañas A; López-Sánchez LM; Valverde-Estepa A; Hernández V; Fuentes E; Muñoz-Castañeda JR; López-Pedrera C; De La Haba-Rodríguez JR; Aranda E; Rodríguez-Ariza A Breast Cancer Res; 2012 Dec; 14(6):R153. PubMed ID: 23216744 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting 'HER2 super-expression' occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells. Vazquez-Martin A; Colomer R; Brunet J; Menendez JA Int J Oncol; 2007 Oct; 31(4):769-76. PubMed ID: 17786307 [TBL] [Abstract][Full Text] [Related]
4. Yes1 signaling mediates the resistance to Trastuzumab/Lap atinib in breast cancer. Takeda T; Yamamoto H; Kanzaki H; Suzawa K; Yoshioka T; Tomida S; Cui X; Murali R; Namba K; Sato H; Torigoe H; Watanabe M; Shien K; Soh J; Asano H; Tsukuda K; Kitamura Y; Miyoshi S; Sendo T; Toyooka S PLoS One; 2017; 12(2):e0171356. PubMed ID: 28158234 [TBL] [Abstract][Full Text] [Related]
5. Functionalized immunostimulating complexes with protein A via lipid vinyl sulfones to deliver cancer drugs to trastuzumab-resistant HER2-overexpressing breast cancer cells. Rodríguez-Serrano F; Mut-Salud N; Cruz-Bustos T; Gomez-Samblas M; Carrasco E; Garrido JM; López-Jaramillo FJ; Santoyo-Gonzalez F; Osuna A Int J Nanomedicine; 2016; 11():4777-4785. PubMed ID: 27698563 [TBL] [Abstract][Full Text] [Related]
6. Synergistic antitumor efficacy against the EGFRvIII+HER2+ breast cancers by combining trastuzumab with anti-EGFRvIII antibody CH12. Xu W; Bi Y; Zhang J; Kong J; Jiang H; Tian M; Li K; Wang B; Chen C; Song F; Pan X; Shi B; Kong X; Gu J; Cai X; Li Z Oncotarget; 2015 Nov; 6(36):38840-53. PubMed ID: 26474285 [TBL] [Abstract][Full Text] [Related]
7. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Gardaneh M; Shojaei S; Kaviani A; Behnam B Breast Cancer Res Treat; 2017 Apr; 162(2):231-241. PubMed ID: 28116540 [TBL] [Abstract][Full Text] [Related]
8. Trastuzumab-Resistant HER2 Wielgos ME; Zhang Z; Rajbhandari R; Cooper TS; Zeng L; Forero A; Esteva FJ; Osborne CK; Schiff R; LoBuglio AF; Nozell SE; Yang ES Mol Cancer Ther; 2018 May; 17(5):921-930. PubMed ID: 29592880 [TBL] [Abstract][Full Text] [Related]
9. Loss of ARID1A Activates ANXA1, which Serves as a Predictive Biomarker for Trastuzumab Resistance. Berns K; Sonnenblick A; Gennissen A; Brohée S; Hijmans EM; Evers B; Fumagalli D; Desmedt C; Loibl S; Denkert C; Neven P; Guo W; Zhang F; Knijnenburg TA; Bosse T; van der Heijden MS; Hindriksen S; Nijkamp W; Wessels LF; Joensuu H; Mills GB; Beijersbergen RL; Sotiriou C; Bernards R Clin Cancer Res; 2016 Nov; 22(21):5238-5248. PubMed ID: 27172896 [TBL] [Abstract][Full Text] [Related]
10. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Tseng PH; Wang YC; Weng SC; Weng JR; Chen CS; Brueggemeier RW; Shapiro CL; Chen CY; Dunn SE; Pollak M; Chen CS Mol Pharmacol; 2006 Nov; 70(5):1534-41. PubMed ID: 16887935 [TBL] [Abstract][Full Text] [Related]
11. β2-AR signaling controls trastuzumab resistance-dependent pathway. Liu D; Yang Z; Wang T; Yang Z; Chen H; Hu Y; Hu C; Guo L; Deng Q; Liu Y; Yu M; Shi M; Du N; Guo N Oncogene; 2016 Jan; 35(1):47-58. PubMed ID: 25798840 [TBL] [Abstract][Full Text] [Related]
12. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer. Mercogliano MF; De Martino M; Venturutti L; Rivas MA; Proietti CJ; Inurrigarro G; Frahm I; Allemand DH; Deza EG; Ares S; Gercovich FG; Guzmán P; Roa JC; Elizalde PV; Schillaci R Clin Cancer Res; 2017 Feb; 23(3):636-648. PubMed ID: 27698002 [TBL] [Abstract][Full Text] [Related]
13. Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. Kim JW; Kim DK; Min A; Lee KH; Nam HJ; Kim JH; Kim JS; Kim TY; Im SA; Park IA J Cancer Res Clin Oncol; 2016 Jan; 142(1):157-65. PubMed ID: 26195282 [TBL] [Abstract][Full Text] [Related]
14. Breast cancer stem cells are involved in Trastuzumab resistance through the HER2 modulation in 3D culture. Rodríguez CE; Berardi DE; Abrigo M; Todaro LB; Bal de Kier Joffé ED; Fiszman GL J Cell Biochem; 2018 Feb; 119(2):1381-1391. PubMed ID: 28722778 [TBL] [Abstract][Full Text] [Related]
15. CTMP, a predictive biomarker for trastuzumab resistance in HER2-enriched breast cancer patient. Chen YC; Li HY; Liang JL; Ger LP; Chang HT; Hsiao M; Calkins MJ; Cheng HC; Chuang JH; Lu PJ Oncotarget; 2017 May; 8(18):29699-29710. PubMed ID: 27447863 [TBL] [Abstract][Full Text] [Related]
16. HER2/neu reduces the apoptotic effects of N-(4-hydroxyphenyl)retinamide (4-HPR) in breast cancer cells by decreasing nitric oxide production. Simeone AM; Broemeling LD; Rosenblum J; Tari AM Oncogene; 2003 Oct; 22(43):6739-47. PubMed ID: 14555987 [TBL] [Abstract][Full Text] [Related]
17. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Truffi M; Colombo M; Sorrentino L; Pandolfi L; Mazzucchelli S; Pappalardo F; Pacini C; Allevi R; Bonizzi A; Corsi F; Prosperi D Sci Rep; 2018 Apr; 8(1):6563. PubMed ID: 29700387 [TBL] [Abstract][Full Text] [Related]
18. NCAPG confers trastuzumab resistance via activating SRC/STAT3 signaling pathway in HER2-positive breast cancer. Jiang L; Ren L; Chen H; Pan J; Zhang Z; Kuang X; Chen X; Bao W; Lin C; Zhou Z; Huang D; Yang J; Huang H; Wang L; Hou N; Song L Cell Death Dis; 2020 Jul; 11(7):547. PubMed ID: 32683421 [TBL] [Abstract][Full Text] [Related]
19. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Saatci Ö; Borgoni S; Akbulut Ö; Durmuş S; Raza U; Eyüpoğlu E; Alkan C; Akyol A; Kütük Ö; Wiemann S; Şahin Ö Oncogene; 2018 Apr; 37(17):2251-2269. PubMed ID: 29391599 [TBL] [Abstract][Full Text] [Related]
20. A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells. Chihara Y; Shimoda M; Hori A; Ohara A; Naoi Y; Ikeda JI; Kagara N; Tanei T; Shimomura A; Shimazu K; Kim SJ; Noguchi S Breast Cancer Res Treat; 2017 Nov; 166(1):55-68. PubMed ID: 28702892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]