These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 26855136)
1. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Saborido R; Ruiz AB; Luque M Evol Comput; 2017; 25(2):309-349. PubMed ID: 26855136 [TBL] [Abstract][Full Text] [Related]
2. Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems. González B; Rossit DA; Méndez M; Frutos M Math Biosci Eng; 2022 Jan; 19(4):3369-3401. PubMed ID: 35341256 [TBL] [Abstract][Full Text] [Related]
3. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm. Jiang S; Zhang J; Ong YS; Zhang AN; Tan PS IEEE Trans Cybern; 2015 Oct; 45(10):2202-13. PubMed ID: 25474815 [TBL] [Abstract][Full Text] [Related]
4. A new evolutionary algorithm for solving many-objective optimization problems. Zou X; Chen Y; Liu M; Kang L IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020 [TBL] [Abstract][Full Text] [Related]
5. A Clustering-Based Adaptive Evolutionary Algorithm for Multiobjective Optimization With Irregular Pareto Fronts. Hua Y; Jin Y; Hao K IEEE Trans Cybern; 2019 Jul; 49(7):2758-2770. PubMed ID: 29994342 [TBL] [Abstract][Full Text] [Related]
6. Guiding Evolutionary Multiobjective Optimization With Generic Front Modeling. Tian Y; Zhang X; Cheng R; He C; Jin Y IEEE Trans Cybern; 2020 Mar; 50(3):1106-1119. PubMed ID: 30575553 [TBL] [Abstract][Full Text] [Related]
7. A Scalar Projection and Angle-Based Evolutionary Algorithm for Many-Objective Optimization Problems. Zhou Y; Xiang Y; Chen Z; He J; Wang J IEEE Trans Cybern; 2019 Jun; 49(6):2073-2084. PubMed ID: 29993855 [TBL] [Abstract][Full Text] [Related]
8. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization. Dai C; Wang Y; Ye M; Xue X; Liu H IEEE Trans Cybern; 2016 Dec; 46(12):3306-3319. PubMed ID: 26685277 [TBL] [Abstract][Full Text] [Related]
9. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Deb K; Mohan M; Mishra S Evol Comput; 2005; 13(4):501-25. PubMed ID: 16297281 [TBL] [Abstract][Full Text] [Related]
10. MOEA/D with adaptive weight adjustment. Qi Y; Ma X; Liu F; Jiao L; Sun J; Wu J Evol Comput; 2014; 22(2):231-64. PubMed ID: 23777254 [TBL] [Abstract][Full Text] [Related]
11. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Ishibuchi H; Imada R; Setoguchi Y; Nojima Y Evol Comput; 2018; 26(3):411-440. PubMed ID: 29786458 [TBL] [Abstract][Full Text] [Related]
13. An encoding technique for multiobjective evolutionary algorithms applied to power distribution system reconfiguration. Guardado JL; Rivas-Davalos F; Torres J; Maximov S; Melgoza E ScientificWorldJournal; 2014; 2014():506769. PubMed ID: 25401144 [TBL] [Abstract][Full Text] [Related]
14. A Cross-Reference Line Method Based Multiobjective Evolutionary Algorithm to Enhance Population Diversity. Feng YN; Wang ZH; Fan JR; Fu T; Chen ZY Comput Intell Neurosci; 2020; 2020():7179647. PubMed ID: 32765597 [TBL] [Abstract][Full Text] [Related]
15. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning. Fiege J; McCurdy B; Potrebko P; Champion H; Cull A Med Phys; 2011 Sep; 38(9):5217-29. PubMed ID: 21978066 [TBL] [Abstract][Full Text] [Related]
16. AMOBH: Adaptive Multiobjective Black Hole Algorithm. Wu C; Wu T; Fu K; Zhu Y; Li Y; He W; Tang S Comput Intell Neurosci; 2017; 2017():6153951. PubMed ID: 29348741 [TBL] [Abstract][Full Text] [Related]
17. A Decomposition-Based Evolutionary Algorithm with Correlative Selection Mechanism for Many-Objective Optimization. Liu R; Wang R; Bian R; Liu J; Jiao L Evol Comput; 2021 Jun; 29(2):269-304. PubMed ID: 33047610 [TBL] [Abstract][Full Text] [Related]
18. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts. Jiang S; Yang S IEEE Trans Cybern; 2016 Feb; 46(2):421-37. PubMed ID: 25781972 [TBL] [Abstract][Full Text] [Related]
19. Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Friedrich T; Neumann F; Thyssen C Evol Comput; 2015; 23(1):131-59. PubMed ID: 24654679 [TBL] [Abstract][Full Text] [Related]
20. Approximating the nondominated front using the Pareto Archived Evolution Strategy. Knowles JD; Corne DW Evol Comput; 2000; 8(2):149-72. PubMed ID: 10843519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]